启动减数分裂重组的DNA双链断裂(DSB)由包括Rec114和Mei4(RM)在内的进化套件形成,这些因素在空间和时间上调节了DSB形成。在体内,这些蛋白质形成了与高阶铬合成某些结构的大型免疫染色灶。在体外,它们形成了一个2:1的异三聚体配合物,该复合物与DNA结合以形成大型动态冷凝物。然而,缺乏对RM复合物的原子结构和动态DNA结合特性的理解。在这里,我们报告了由MEI4的N末端的Rec114的c末端的异三聚体复合物的结构模型,并由核磁共振实验支持。这种最小的复合物缺乏预测的Rec114内固有无序区域,足以结合DNA并形成浓度。单分子实验表明,最小的复合物可以桥接两个或多个DNA双链体,并可以通过远距离相互作用产生力来凝结DNA。alphafold2预测了不同分类单元的RM直系同源物的相似结构模型,尽管它们的序列相似程度较低。这些发现提供了对蛋白质和蛋白质 - 蛋白质 - DNA相互作用的保守网络的洞察力,这些网络可以形成冷凝水并促进减数分裂DSB的形成。
在凝结物理学中,旋转超氟4和冷原子气体的行为进行了广泛的研究,请参见。[1 - 6]及其中的参考。具有低角速度,ω<ωc 1,超氟4和冷原子气体,放置在最初静止的容器内,由于基本激发的随后旋转而不会响应,因为在这种情况下,基本激发和涡流的产生在这种情况下是无能为力的。随着旋转频率ω的增加,对于ω>ωc1,系统会产生浸入超氟物质中的正常物质的细丝涡旋。然后,对于ω>ωlat>ωC1,涡旋形成三角形晶格,该晶格模拟了容器的刚体旋转。对于ω>ωC2>ωlat>ωC1,经典的冷凝物场被完全破坏。静息金属超导体对外部均匀恒定磁场h的作用做出反应,与中性超氟在旋转方面的响应类似,请参见。[1,7]。通过在该表面层中发生的超导电流(Meissner-Higgs效应),筛选在超导体上的低磁场h(在边界附近的磁场L H(有效光子质量)的所谓穿透深度上进行筛选。超导体在两个类别(第一和第二种的超导体)上细分,这是在Ginzburg-Landau参数的依赖性的依赖性的,其中L ϕ是所谓的相干长度,是公寓
抽象的长期非编码RNA(LNCRNA)成为心脏物理学和疾病的关键调节因子,尽管揭示其作用方式的研究仍然仅限于很少的例子。我们最近确定了PCHARME,这是一种与染色质相关的LNCRNA,其在小鼠中的功能敲除导致心脏肌肉的肌生成和形态重塑。在这里,我们结合了基因表达(CAGE),单细胞(SC)RNA测序和整个原位杂交分析的帽盖 - 分析,以研究PCHARME心脏的表达。自心肌生成的早期步骤以来,我们发现lncRNA专门局限于心肌细胞,在那里它有助于形成含有MATR3的特定核冷凝物,以及心脏发育的重要RNA。与这些活性的功能性意义一致,小鼠的PCHARME消融导致心脏囊肿的成熟延迟,这最终导致心室心肌的形态改变。由于心肌的先天异常在人类上与临床相关,并且患者倾向于重大并发症,因此控制心脏形态的新基因的鉴定变得至关重要。我们的研究为促进心肌细胞成熟的新型LNCRNA介导的调节机制提供了独特的见解,并与Charme基因座有关未来的疗法应用。
摘要:我们考虑一种通过二维刺激的拉曼绝热通道(2D搅拌)过程的亚波长超定位和原子质波的图案的方法。最初在其地面上制备的原子与Doughnut形的光学涡流泵束相互作用,而波动波则在空间中具有恒定(顶帽)强度曲线的激光束。梁以违反直觉的时间序列发送,其中stokes脉冲在泵脉冲之前。与行动波和涡流束相互作用的原子通过2D搅拌将其转移到最终状态,而位于涡流束核心的原子保持在初始状态,从而在基态原子的空间分布中形成了一个超鼻纳米尺度原子位。通过数值模拟,我们表明,2D搅拌方法的表现优于建立的相干种群捕获的方法,从而产生了原子激发的更强限制。Gross-Pitaevskii方程的数值模拟表明,使用这种方法可以在被困的Bose-Einstein冷凝物(BEC)中创建2D明亮和深色的孤子结构。该方法允许人们避免由常规方法固有的衍射极限设置的限制,以形成局部孤子,并完全控制纳米分辨率缺陷的位置和大小。
由其超微结构Daniel Scholl 1,Tumara Boyd 1,Andrew P. Latham,2,3,4,Alexandra Salazar 1,Asma Khan 1,5 Steven Boeynaems 6,7,8,9,10,Alex S. Holehouse 11,12 Keren Lasker 1*隶属关系:1综合结构与计算生物学系,Scripps研究所,加利福尼亚州拉霍拉,92037,美国2定量生物科学研究所,加利福尼亚大学,旧金山大学,旧金山,旧金山,旧金山,CA 94158,美国。3加利福尼亚大学旧金山,旧金山,加利福尼亚州94158的加利福尼亚大学生物工程和治疗科学系。4加州大学旧金山分校,旧金山,旧金山,CA 94158,美国5美国德克萨斯州休斯敦市,德克萨斯州儿童医院,美国87030,美国8治疗创新中心(THINC),贝勒医学院,美国德克萨斯州休斯敦市贝勒医学院,美国977030,美国9阿尔茨海默氏症和神经退行性疾病中心和神经退行性疾病(CARD),德克萨斯州儿童医院,德克萨斯州休斯顿,美国107030年,美国10 Dan Luncn cancer cancer intimes美国117030,美国11日,美国11个生物化学和分子生物物理系,华盛顿大学医学院,圣路易斯,密苏里州圣路易斯,12个生物分子冷凝物中心(CBC),华盛顿大学,圣路易斯,圣路易斯,密苏里州圣路易斯 *通信 *通讯:dopark@scripps.edu
Rohit Pappu是Gene K. Beare杰出的生物医学工程学教授,也是圣路易斯华盛顿大学(Washu)的James F. McKelvey工程学院的生物分子冷凝水中心主任。Pappu获得了塔夫茨大学的生物物理学博士学位。在两次博士后经历后,他加入了Washu生物医学工程学院,在Johns Hopkins University的医学院医学院的生物学和生物物理学系中,一个在Washu医学院的生物化学和分子生物物理学系,第二个。pappu的研究兴趣集中在蛋白质和核酸的形式,功能和相位行为上,特别关注本质上无序的蛋白质和RNA分子。追求这些研究兴趣的目的是了解细胞物质的空间和时间组织的物理基础,以及它们在神经退行性和增殖性疾病的背景下的失调。pappu的兴趣是通过结合了聚合物物理学,体外和细胞实验,生物信息学,机器学习以及与生物化学和细胞生物学领域主题领域的协作网络的聚合物物理理论,体外和细胞实验,生物信息学,机器学习和合作网络的方法来推动的。基础科学的进步被利用,以追求合成生物学新型生物材料和应用的设计,开发和部署的进步。Pappu的研究由NSF,NIH,AFOSR和St. Jude儿童研究医院的赠款资助。在Washu,Pappu教授有关生物工程热力学和生物聚合物物理学的课程。作为生物分子冷凝物中心主任,Pappu协调了参与基础研究和应用研究的PI,重点是生物学,生物物理学,生物化学和冷凝水生物工程。
抽象目的 - 本文旨在介绍建立社会fr€ohlich冷凝物的基本假设,并吸引其他研究人员(从物理和社会政治科学)的注意力,以实现高度能量社会的稳定性和秩序保存建模的问题,并与高温的社会能量沐浴相结合。设计/方法论/方法 - 社会fr ichlich凝结的模型及其分析基于量子热力学和田间理论的数学形式主义(物理外的应用)。发现 - 所提出的类似量子的模型提供了像Fr€ohlich凝结这样复杂的社会政治现象的一致操作模型。研究局限性/含义 - Ohlich凝结的社会模型在很大程度上基于开放量子系统的理论。其一致的详细说明需要额外的努力。实用的含义 - 现代信息开放社会的稳定性证明了这样的现象,例如社会上的凝结。社会含义 - 接近ohlich冷凝的状态是社会稳定的有力来源。了解其信息结构和起源可能有助于稳定现代社会。独创性/价值 - 在社会和政治科学中,fr ohlich凝结的量子般模型的应用确实是社会稳定的新颖和原始方法,用于社会稳定的数学模型,从而暴露于大众媒体和基于Internet的来源的强大信息辐射。关键字社交fr€ohlich冷凝水,社会稳定性,保留秩序,类似量子的建模,高社交温度,信息领域,信息储存库,bose-einstein Statistics,Planck公式,信息超负荷,不可区分性,不可区分性,社交能源,社交能源
上下文。热木星是潮汐锁定的气态系外行星,表现出巨大的白天温度对比。正如许多观察结果所暗示的那样,他们凉爽的夜晚被认为是托管云。然而,这些云的确切性质,它们的空间分布以及它们对大气动力学,热结构和光谱的影响仍然不清楚。目标。我们研究了WASP-43 B的大气,这是最近与James Webb空间望远镜(JWST)观察到的短期热木星,以了解云对大气循环和热结构的辐射和动态影响。我们旨在了解具有各种尺寸和大气金属性的不同种类的冷凝物的影响。方法。,我们使用了一个3D全球气候模型(GCM),该模型具有新的温度依赖性云模型,其中包括辐射反馈以及水动力整合,以研究WASP-43 b的大气特性。我们从GCM模拟中产生了可观察到的物品,并将它们与光谱相曲线进行了比较,从各种观察结果到对大气特性的限制。结果。我们表明云具有净变暖效果,这意味着由云引起的温室效应比反照率冷却效果强。我们表明,云的辐射效应对黄蜂的动力学和热结构有各种影响。取决于冷凝水的类型及其尺寸,辐射动力反馈将改变水平和垂直温度梯度并降低风速。对于超极性金属气氛,大气中形成的云层较少,导致反馈较弱。与HST,Spitzer和JWST观察到的光谱相曲线的比较表明,Wasp-43 B的夜间夜间浑浊,排除了Sub-Micron Mg 2 Sio 4云颗粒作为主要不透明源。区分多云的太阳能和多云的超极性金属气氛并不简单,需要进一步观察反射的光和热发射。
端粒(ALT)途径的替代延长可在很大一部分癌症中保持端粒长度,这些癌症与临床不良结局相关。因此,对于为Alt Cancer制定新的治疗策略,对ALT机制有更好的了解。SUMO修饰端粒蛋白与Alt端粒相关PML体(APB)的形成,其中端粒聚集并富含DNA修复蛋白,以促进ALT中的同源性远距离DNA合成。但是,仍然未知(如果是这样),Sumo是否支持ALPB形成。在这里,我们表明,含有DNA修复蛋白的相扑凝结物在没有APB的情况下可以维持端粒。在缺乏APB的PML基因敲除Alt细胞系中,我们发现表现为PML和APB的ALT特征所必需的Sumoylation。化学诱导的端粒靶向相扑会在PML无效细胞中产生冷凝物的形成和ALT特征。这种效应需要Sumoylation和Sumo相互作用基序(SIMS)之间的相互作用。从机械上讲,Sumo诱导的效应与端粒处的DNA修复蛋白的积累有关,包括Rad52,Rad51AP1,RPA和BLM。此外,rad52可以以相关方式与BLM解旋酶合作,在端粒上富集相分离,并在端粒上富集Sumo,并促进端粒DNA合成。共同表明,Sumo凝结物形成了DNA修复因子之间的协作,以支持没有PML的ALT端粒维护。鉴于Sumoylation抑制剂在癌症治疗中的有前途的影响,我们的发现表明它们在扰动端粒癌细胞中的驱动端粒维持中的潜在使用。
简介。当超级流体旋转时,形成了圆旋的晶格。涡旋晶格的振荡,所谓的Tkachenko模式[1-3](有关最近的评论,请参见参考文献。[4]),具有许多独特的属性。与固体中的普通声波不同,在低动量时,tkachenko波具有二次分散关系ω〜 Q 2,只有一个po降低[5-7]。tkachenko模式是自发对称性破坏的相当复杂的结果:超级流体涡流晶格中有许多对称性,但只有一个Nambu-Goldstone Boson(NGB)[8,9]。Tkachenko模式应存在于旋转的超流体4 HE中,但是在超电原子的旋转Bose-Einstein冷凝物中,最终观察到了这一点[10]。在更大的长度尺度上,Tkachenko模式被认为是螃蟹脉冲星的振荡模式的来源[11]。作为tkachenko模式是唯一的低能自由度,人们期望它可以通过涉及单个场地的有效领域理论(EFT)来描述。然而,到目前为止,对这种理论的结构的完全理解尚未实现。在二次级别上,效率拉格朗日[8]与Lifshitz标量[12]相吻合,但是Lagrangian中相互作用项的形式以及它们如何受到对称性的约束。需要这些相互作用项来计算Tkachenko模式的衰减率[13]。在这封信中,我们表明了非交易性领域理论(例如,参见参考文献。[14,15])提供了一个方便的框架,用于构建Tkachenko模式的有效领域理论。非交换性场理论(NCFT)可能与该问题相关是可以直观地理解的 - 旋转非同性主义系统正式等同于放置