• 串联/并联冷板:去离子水(可靠性和维护问题) • 单独的冷板回路(模块化,与液位转换器集成,需要二次回路) • 高级冷却(材料、冷却剂类型、无泵)
安全优势 • ARC-100 池式设计确保主冷却剂、反应堆堆芯、主泵、反应堆组件和中间热交换器均包含在主反应堆容器内。 • 大量的主钠提供了更大的热容量(更大的热惯性),从而允许在温度超调期间有更长的缓冲期。 • 钠池中的自然循环将堆芯的残余衰变热转移出去,确保在温度超调期间的长期被动安全。 • 金属燃料快谱堆芯的固有安全特性使反应堆除了主、辅停机装置外,还能够可靠地实现自限反应性。 • 消除了反应堆容器顶部以下的管道穿透,避免了由于管道故障而导致的冷却剂流失事故。
摘要。该研究的目的是确定添加与EG(乙二醇)结合的墨氧化物(GO)流体或水可能会增加汽车辐射器中热的转移。散热器是汽车冷却系统的重要部分;他们消散发动机产生的额外热量。常规冷却剂转运温度的容量受到限制,包括乙二醇和水。使用纳米颗粒流体可以提高传导热量的能力,纳米颗粒流体基本上是碱基中颗粒的溶液。该技术使用乙二醇和水来通过分散GO颗粒来形成纳米颗粒流体。使用实验,描述了纳米颗粒流体的弹性或热特征。接下来,使用早期版本的辐射器布置,进行了许多传热测试。与传统冷却剂相比,在利用GO纳米颗粒流体的同时,已经评估了散热器在各种功能情况下散发热量的能力。将散热器的传热效率与普通的乙二醇进行比较(或最初的结果表明与GO纳米颗粒液的添加可改善它。增加了纳米颗粒流体组合中的热导率,从而导致更有效的热量耗散。为了确保在汽车冷却机制上有效利用纳米颗粒流体,在长期暴露于升高温度时,可以进一步评估它的耐用性。本研究的持续尝试为汽车应用提供了最先进的冷却系统。结果表明,与常规冷却剂结合使用GO纳米颗粒流体有机会提高汽车散热器的热传递或一般效率。
电池存储安全 使用外部冷却器进行液体冷却 在模块级别直接注入灭火剂 主动监控空气、冷却剂和电池温度、烟雾、电池废气、电压和电流。 所有这些都与自动关机和警报功能相关。
• 冷却塔水,• 反应堆冷却剂水,• 压水反应堆二次侧蒸汽/水回路,• 定子冷却,• 乏燃料池净化,• 放射性废水管理• 任何水管理过程的变化都需要广泛的资格认证,因为一旦发生故障,反应堆将关闭,造成令人遗憾的影响。
- 大型轻水反应堆 (LWR):这些是传统的额定功率为 1,000 兆瓦 (MW) 的核反应堆,自 1950 年代以来一直在全球运行,包括目前在美国运行的 90 多座商用反应堆 - 小型模块化轻水反应堆 (SMR):这是一种新型、现代化的 LWR 类型,其规模已缩小——通常额定容量在 100 到 300 MW 之间。因此,它们比传统的 LWR 反应堆占用空间更小。这些设计仍然依赖于传统的 LWR 设计概念,但包括增强的安全性和操作组件。SMR 通常旨在利用工厂制造模块化组件,这些组件将在现场组装,以简化项目开发并减少延误。(例如:NuScale Power。) - 先进反应堆:这些设计通常很小且模块化——设计为像 SMR 一样在工厂制造——但使用传统 LWR 设计的替代品,后者依靠水作为冷却剂。先进反应堆技术依赖于新型冷却剂和燃料,包括液态金属、氟化盐或气体。(例如:TerraPower、X-energy、Oklo。)
摘要:质量注入热防护是一种高效、主动的热防护技术,它通过向流场中注入储存的冷却剂来冷却结构,冷却剂在吸收热量的同时,还对流场结构产生影响,起到隔热作用。质量注入方法可用于高热流密度、长时间飞行的工况,是高超声速飞行器最有潜力的冷却技术之一。蒸发、薄膜冷却和对冲喷射是高超声速飞行器热防护的典型质量注入技术。本文介绍了3种典型的质量注入技术的冷却机理,比较了3种技术的注入方式、流场特点和冷却效率,分析了3种技术在飞行器上应用的不足,并针对每种不足推荐了几种质量注入技术的组合方案。最后,对质量注入技术的进一步发展提出了3点展望。未来应重点发展大体积注入热防护技术的流体-热-结构耦合方法、注入结构设计与优化以及热防护系统效能评估等。
摘要:质量注入热防护是一种高效、主动的热防护技术,它通过向流场中注入储存的冷却剂来冷却结构,冷却剂在吸收热量的同时,还对流场结构产生影响,起到隔热作用。质量注入方式可用于高热流密度、长时间飞行的工况,是高超声速飞行器最有潜力的冷却技术之一。蒸发、薄膜冷却和对冲喷射是高超声速飞行器热防护的典型质量注入技术。本文介绍了3种典型的质量注入技术的冷却机理,比较了3种技术的注入方式、流场特点和冷却效率,分析了3种技术在飞行器上应用的不足,并针对每种不足推荐了几种质量注入技术的组合方案。最后,对质量注入技术的进一步发展提出了3点展望。未来应发展大体积注入热防护技术的流体-热-结构耦合方法、注入结构设计与优化以及热防护系统效能评估等。
通常,润滑剂/冷却剂对刀片中的样品和磨料的润湿效果越好,刀片的“负荷”就越小。负荷是延展性材料(如铜、铝或聚合物)粘附在刀片组件上并降低其切割效率的过程。这种负荷可能以多种方式发生。例如,当样品和刀片之间的接触点润滑不良时,摩擦会产生较高的局部温度。这种温度可能会导致延展性金属和刀片组件之间出现局部焊接或“磨损”。另一方面,许多聚合物在高温条件下会软化,并牢牢粘附在刀片边缘,再次降低刀片效率。硬质材料(如陶瓷)也会产生负荷,但通过完全不同的机制。它们可能会导致刀片本身的延展性粘合剂材料涂抹在磨料上,从而降低切割率。对于低速应用,使用 ISOCUT® 流体等润滑剂将获得最佳效果。该产品在低速时提供极好的表面润湿性,但它对微电子应用有一个缺点。它是一种油基润滑剂,很难从许多微电子设备中的小凹槽中彻底清除。另一种选择是 ISOCUT® PLUS 流体。这种水基润滑剂/冷却剂专为低速和高速设计