摘要 — 最近的研究表明,许多数据中心总能耗的很大一部分是由其冷却系统运行效率低下造成的。如果没有有效的热监控和准确的位置信息,冷却系统通常会使用不必要的低温设定点来过度冷却整个房间,从而导致能耗过高。传感器网络技术最近已被用于数据中心热监控,因为它对已经很复杂的数据中心设施具有非侵入性,并且对瞬时 CPU 或磁盘活动具有鲁棒性。然而,现有的解决方案以过于简单的方式放置传感器,没有考虑数据中心的热动力学,导致不必要地降低热服务器检测概率。在本文中,我们首先将数据中心热服务器检测的传感器放置问题表述为两种不同场景中的约束优化问题。然后,我们提出了一种基于计算流体力学 (CFD) 的新型放置方案,将冷却系统和服务器布局等各种因素作为输入,以分析数据中心的热状况。基于各种服务器过热场景中的 CFD 分析,我们应用数据融合和高级优化技术来找到接近最佳的传感器放置解决方案,从而显著提高检测到热服务器的概率。我们在真实服务器机房演示中的实证结果
电动汽车高压电池的技术正在不断发展,并呈现出新的挑战。对性能,安全性和可持续性的要求正在上升。同时,电池必须尽可能轻巧和计算,并且可以经济制造和回收。超出其核心组件(单元格,电池管理系统和冷却系统),电池系统拥有许多其他组件,这些组件可能与整个系统的优化有关。这些组件的技术设计 - 单元/模块支架,垫片,覆盖物,媒体线和电池盒的组件 - 必须满足nuber的要求和属性,其中一些 div>
固定螺距螺旋桨 ..................................................7-5 可调螺距螺旋桨 ..................................................7-6 活塞发动机飞机的螺旋桨超速 ........................................7-7 感应系统 ..................................................................7-7 化油器系统 ..................................................................7-8 混合控制 ..................................................................7-9 化油器结冰 ..................................................................7-9 化油器加热 ..................................................................7-10 化油器空气温度计 ..................................................7-11 外部空气温度计 ..................................................7-11 燃油喷射系统 ..................................................................7-11 增压器和涡轮增压器 ..................................................7-12 增压器 ..................................................................7-12 涡轮增压器 ..................................................................7-13 系统操作 ..................................................................7-14 高空性能 ..................................................................7-14 点火系统 ..................................................................7-15 油系统 ..................................................................7-16 发动机冷却系统.................................................7-17 排气系统...............................................................7-18 启动系统...............................................................
• ALR-400 RWR 是飞行员自我保护平台的最佳盟友 • ALR-400 旨在通过几个标准机械外壳轻松安装在各种平台(包括战斗机、运输机和直升机)上。 • ALR-400 的冷却系统使其成为即使在爆炸性环境中运行的理想选择 • 模块化设计,灵活的硬件架构 • 高空间精度和分辨率 • 广泛的空间覆盖范围 • 多 CW 场景能力 • LPI 雷达检测能力 • 提高灵敏度 • 提高动态范围 • 灵活集成 • 逻辑 ICD 适应平台
受控的煮沸管理是一个关键挑战。船上的低温坦克需要在飞机不运行的情况下最大程度地减少沸腾的时间。在飞行的所有阶段中,提取的氢气需要应对由燃料电池系统本身和周围环境引起的热流引起的储罐内的沸腾。如果无法实现这一目标,则存储系统将需要主动冷却系统或增强的绝缘材料,均增加重量。最关键的时期将是在飞行前后的地面上持有时间,这些时间可以确定存储系统的设计要求。
固定螺距螺旋桨 ..................................................7-5 可调螺距螺旋桨 ..................................................7-6 活塞发动机飞机的螺旋桨超速 ........................................7-7 感应系统 ..................................................................7-7 化油器系统 ..................................................................7-8 混合控制 ..................................................................7-9 化油器结冰 ..................................................................7-9 化油器加热 ..................................................................7-10 化油器空气温度计 ..................................................7-11 外部空气温度计 ..................................................7-11 燃油喷射系统 ..................................................................7-11 增压器和涡轮增压器 ..................................................7-12 增压器 ..................................................................7-12 涡轮增压器 ..................................................................7-13 系统操作 ..................................................................7-14 高空性能 ..................................................................7-14 点火系统 ..................................................................7-15 油系统 ..................................................................7-16 发动机冷却系统.................................................7-17 排气系统...............................................................7-18 启动系统...............................................................
一般数据 气缸数 8 气缸排列 垂直直列 循环 4 冲程 感应系统 涡轮增压和空对空增压冷却 燃烧系统 火花点火 冷却系统 水冷 缸径和冲程 160 x 180 毫米 排量 正文 压缩比 9.5:1 – (LC) 低压缩 11.5:1 – (HC) 高压缩 旋转方向 从飞轮上看逆时针 润滑系统总容量 165.5 升 冷却液总容量 48 升 长度 2655 毫米 宽度 1485 毫米 高度 1565 毫米 干重 3350 千克
• 简化系统平衡;更少的盒子、更短的接线、更少的冷却,减少故障点 • 消除独立的电源转换器、逆变器、电机驱动器、控制器和冷却系统,减轻重量,提高能源效率并提高整体可靠性 • 添加更多电池以提高性能、可靠性、安全性和运行耐力,而不会影响重量/空间(SWAP-C) • 在整个飞机结构中分布电池和电力电子设备;更好的热管理并将电池端子放置在电动机附近 • 统一的软件定义电力电子设备:
Imec 的 snapscan VNIR 测距系统是高光谱成像应用研究的重大突破。只需几百毫秒,即可创建具有无可比拟的信噪比和空间与光谱分辨率的高质量超立方体数据集。snapscan 演示套件可实现最高质量的应用研究,同时仍保持用户友好性。它集成了所需的所有关键组件:光谱图像传感器、相机、光学元件、压电扫描、主动冷却系统、照明、三脚架支架和 HSImager:imec 研究团队开发的最先进的高光谱成像软件。