设施。拆除和更换为设施的 (2) 个步入式冷藏室服务的制冷和冷却设备 — — 。这包括:�� 拆除 (3) 个制冷剂压缩机和相关制冷剂管道,断开相关冷凝水和能量回收管道。还包括断开与现有电源面板的连接。�� 安装 (2) 个新的制冷剂压缩机、制冷剂管道,包括温度和控制附件。包括连接到相关的冷凝水和能量回收管道。在重新连接到新设备之前,现有冷凝水和能量回收管道需要进行吹扫、清洁和压力测试。还包括连接到新的电源面板。�� 拆除 (6) 个单元冷却器(壁挂式和天花板式)和相关制冷剂管道、温度和控制附件。还包括断开与现有电源面板的连接。�� 安装 (4) 个新的单元冷却器,将新的制冷剂管道安装到相关的压缩机、温度和控制附件上。包括新的冷凝水 DFD 项目 13L3HRebid2 第 A-2 页 1 管道到排水管、所有管道绝缘和电线/连接。要重新使用的现有 2 部分制冷剂管道需要清洗、清洁、压力 3 测试,然后重新连接到新管道。 4 ��� 安装新的 208V 电源面板和所有制冷剂压缩机的启动器 5 。将所有压缩机和 208 V 单元冷却器从现有电源上断开 6
2. 无线电和电视发射台:本规范的规定不适用于用于无线电和电视传输的电气设备,但适用于电源设备和线路以及塔和天线的安装。 3. 临时测试系统:安装测试或维修电气设备或装置所需的任何临时系统无需许可证。 气体: 1. 便携式加热器具。 2. 更换任何不改变设备批准或导致设备不安全的小零件。 机械: 1. 便携式加热器具。 2. 便携式通风设备。 3. 便携式冷却装置。 4. 本规范管制的任何加热或冷却设备内的蒸汽、热水或冷冻水管道。 5. 更换任何不改变其批准或导致其不安全的任何零件。 6. 便携式蒸发冷却器。 7. 独立制冷系统,制冷剂含量为 10 磅(4.54 千克)或更少,由 1 马力(0.75 千瓦)或更少的电机驱动。管道工程:1. 堵塞排水管、水管、污物管、废水管或通风管的泄漏,但如果任何隐蔽的存水弯、排水管、水管、污物管、废水管或通风管出现故障,需要拆除并用新材料更换,则此类工作应被视为新工作,并应根据本规范的规定获得许可证和进行检查。2. 清除堵塞或修复管道、阀门或固定装置中的泄漏,以及
为什么要使用 AZTEC 设备?• 所有标准“A”系列设备均通过 ETL 认证,并经过多年的开发,生产出业内最先进的间接和间接/直接蒸发冷却设备之一。这确保了设备所有者的可靠性并符合公认的标准。• 设备设计用于室外应用,屋顶或地面安装,标准型号有 11 种不同的机柜尺寸,大小从 2,000 到 37,500 CFM。也有更大的型号可供选择。请联系您当地的 Aztec 代表或工厂了解更多信息。• 标准设备上提供采用双程鼓管设计的间接燃烧气体加热部分,输入容量高达 1,400 MBH。整个初级和次级热交换器均由 400 系列不锈钢制成。高达 600 MBH 的输入结合了数字高调节功率燃气燃烧器(版权所有 © 2007 Mestek Inc 专利申请中),带有单独控制的变速燃烧空气鼓风机电机和电动燃气阀,用于无连杆设计。更大的输入结合了标准调节功率燃气燃烧器。如果无法使用燃气,也可以使用蒸汽或热水盘管或电加热元件。• Aztec 的长期目标是,所有标准空气处理器都经久耐用。我们只使用最优质的组件和设计单元,以便快速访问,从而简化日常维护。• 每个单元在发货前都在工厂进行测试和运行。这确保了客户满意度并最大限度地减少了现场启动问题。所有单元还提供工厂认可的启动服务。
近年来,新能源的广泛使用使得电力设备必须在高电压、大功率、高温等恶劣环境下工作[1,2]。因此,电介质材料作为电力设备必不可少的组成部分,受到了更多的关注。电力设备中使用的固体电介质可分为聚合物电介质和无机电介质。无机电介质具有较高的温度稳定性,但也存在击穿强度(E b )低、柔韧性差的缺点,给大规模制备带来了不可忽视的困难。与无机电介质不同,聚合物电介质具有重量轻、柔韧性好、易于加工等优点[3]。同时,优异的介电性能(高E b 、低介电损耗[tanδ])使其在电力设备中得到广泛的应用。随着电子和电力系统的不断小型化和功率输出的增加,许多领域都要求聚合物电介质在恶劣环境下可靠工作。例如,火箭和航天飞机壳体附近的控制和传感电子设备需要高温电介质材料在250 ∘ C 以上工作。在地下油气勘探中,工作温度超过 200 ∘ C [4]。不幸的是,传统聚合物电介质热稳定性差,严重威胁电力设备的可靠运行,并显著缩短其生命周期。因此,在高温应用中使用二次冷却设备来降低工作温度。然而,考虑到地下勘探和空间站等大型设施所经历的极端温度,二次冷却很难实现。因此,一个更具吸引力的策略是开发能够在高温下长期工作的耐高温聚合物电介质。这种策略可以提高系统可靠性,降低成本,并消除对大型冷却系统的需求以及远程放置电子设备所需的接线和互连 [5,6]。
随着 5G、人工智能、物联网等技术的快速发展,微电子设备的工作温度不断升高,对导热和电绝缘材料的需求显著增加[1-4]。这主要是因为微电子设备运行时芯片产生的热量由于一层热界面材料(TIM)而不能迅速传递到冷却设备。TIM 的主要作用是填充微电子设备与散热器翅片之间的缝隙,从而降低界面热阻[5]。环氧树脂或硅橡胶等聚合物因具有优异的黏附性、热稳定性和电绝缘性,常用作 TIM[6,7]。然而,它们的 TC 值较低(低于 0.3 W/m·K),不能满足微电子设备的需求。因此,迫切需要具有优异平面热导率的TIM,它能及时将热量传递至散热片,进而将热量传输到设备外部。通过加入陶瓷填料,如AlN[8-10]、Al2O3[11-13]、Si3N4[14]和BN[15,16],复合策略被认为是提高热导率的最有效方法。特别是对于具有与石墨类似的层状结构的BN,由于其优异的热导率(平面方向约600W/m·K)和宽的带隙[17-20],它引起了人们的极大兴趣。因此,将BN加入到聚合物中对提高热导率具有重要意义。然而,通过传统共混方法制备的BN基复合材料的平面热导率远低于平面取向的。在这方面,已经开发出一些策略来增强聚合物复合材料的平面导热性。一种策略是构建三维网络骨架。在这种结构中,
b imem-CNR研究所,帕科地区Delle Scienze 37/A 43124 Parma,Italia。*francesco.cugini@unipr.it摘要磁化材料的绝热温度变化的直接测量对于设计有效且环保的磁性冷却设备至关重要。这项工作报告了测量原理和主要实验问题的概述,这些问题必须考虑获得可靠的材料表征。根据有限差异热模拟和特殊设计的实验,讨论了非理想绝热条件,温度传感器的作用以及材料特定特性的作用。详细考虑了两种情况:薄样品的表征以及对快速场变化的热量响应的测量。最后,在具有一阶过渡的材料的情况下,讨论了不同测量方案的影响。1。引言制冷在我们的现代社会中起着基本作用:它渗透了我们的生活,并有助于人类的进化和健康。但是,它的成本超过了全球能源消耗的18%,并且这一数字不断增加二人组,以扩散发展中国家的制冷技术。1对实际气体压缩系统的这种巨大的能源需求和对环境的高度影响,紧急促进了新的环保解决方案。在新兴技术中,有磁制冷,它有望产生低生态影响,没有危险的液体,高效率和减少的电能消耗。2磁制冷是基于磁性效应(MCE),该效应由绝热温度变化(ΔTAD)或通过施加磁场的变化在磁性材料中诱导的等温熵变化(ΔST)组成。3通过磁场的周期性变化获得制冷剂循环。2四个元素对于建立磁冷却系统至关重要:磁化(MC)材料,磁场的来源,一种将材料相对移动到田间移动的机制以及用于传热的流体。通过应用或去除磁场引起的温度变化是导致传热的驱动力。这取决于材料的特性和施加磁场的强度。当前,最有前途的MC材料显示,在1 T的磁场变化中,可逆的ΔTAD为约3 K,这是可以用永久磁体组装而实现的。4–6尽管在过去的二十年中建造了许多磁性冰箱的原型,但竞争性MC设备的开发仍然需要更多执行的MC材料和新的智能技术解决方案。2,4,7除了对材料的磁性特性的基本研究外,寻找有效的冷却元素还需要测量其MC