准确而稳健地预测药物-靶标相互作用 (DTI) 在药物发现中起着至关重要的作用。尽管人们在预测新型 DTI 方面投入了大量精力,但现有方法仍然存在标记数据不足和冷启动问题。更重要的是,目前缺乏阐明药物和靶标之间作用机制 (MoA) 的研究。区分激活和抑制机制对于药物开发至关重要且具有挑战性。在这里,我们介绍了一个称为 DTIAM 的统一框架,旨在预测药物和靶标之间的相互作用、结合亲和力以及激活/抑制机制。DTIAM 通过自监督的预训练从大量无标记数据中学习药物和靶标表示,从而准确提取药物和靶标的子结构和上下文信息,从而有利于基于这些表示的下游预测。DTIAM 在所有任务中都比其他最先进的方法实现了显着的性能提升,尤其是在冷启动场景中。此外,独立验证证明了 DTIAM 强大的泛化能力。所有这些结果表明,DTIAM 可以提供一种实用的工具来预测新型 DTI 并进一步区分候选药物的作用机理。DTIAM 首次提供了一个统一的框架,可以准确、稳健地预测药物-靶标相互作用、结合亲和力以及激活/抑制机制。
精度 1 水平位置精度 (RMS) SPS 1.2 m CEP RTK 2 0.02 m 10s GNSS 中断 0.35 m 60s GNSS 中断 3.5 m 垂直位置精度 (RMS) SPS 1.8 m CEP RTK 2 0.03 m 10s GNSS 中断 0.4 m 60s GNSS 中断 4 m 速度精度 (RMS) 水平 0.02 m/s 垂直 0.02 m/s 航向精度 (RMS)3 0.2 姿态精度 (横滚/俯仰,RMS) 0.1 操作限制 速度 515 m/s 加速度 ±8 g 角速率 ±200 /s 温度校准范围 -40 C 至 +85 C 计时首次定位时间 4 冷启动 5 < 40 秒 热启动 6 < 30 秒 热启动 7 < 10 秒 信号重新捕获 < 2 秒 RTK 初始化时间 < 10 秒 GNSS 更新率 10 Hz INS 输出数据率 100 Hz 1PPS 精度 1、8 ±50 ns 灵敏度跟踪 -160 dBm 冷启动 -140 dBm 环境 工作温度 -40 o C 至 +85 o C 非工作温度 -40 o C 至 +85 o C 资格在 QTR 中指定 联系工厂 电气输入电压 (VDC) 9-32 V 功耗 < 5 W 数字接口 以太网
NSR31 系列是专为电池直接连接汽车应用而设计的 150 mA 低压差线性稳压器。3 V 至 40 V 的宽电源电压范围使 NSR31 系列非常适合恶劣的工作条件,包括负载突降、冷启动和启停。NSR31 系列在轻负载下静态电流为 5 μA,非常适合严格限制待机功耗的常开汽车应用。借助集成补偿实现,NSR31 系列可以稳定使用低 ESR 陶瓷输出电容器,范围从 2.2 μF 到 100 μF。
本文概述了最相关的燃料电池类型,并确定了在商用电动航空推进系统中应用最有前景的选项。描述了聚合物电解质膜、碱性、直接甲醇、磷酸、熔融碳酸盐和固体氧化物燃料电池的总体设计、工作原理和主要特性。评估标准源自航空业对燃料电池在电动飞机中的应用的特定要求。根据这些标准,通过加权积分评级对所介绍的燃料电池类型进行评估。评估结果显示固体氧化物、低温和高温聚合物电解质膜燃料电池具有很高的应用潜力。所有燃料电池类型的设计挑战都受到重视,例如冷启动、冷却和加压空气供应。
本文概述了最相关的燃料电池类型,并确定了在商用电动航空推进系统中应用最有前景的选项。描述了聚合物电解质膜、碱性、直接甲醇、磷酸、熔融碳酸盐和固体氧化物燃料电池的总体设计、工作原理和主要特性。评估标准源自航空业对燃料电池在电动飞机中的应用的特定要求。根据这些标准,通过加权积分评级对所介绍的燃料电池类型进行评估。评估结果显示固体氧化物、低温和高温聚合物电解质膜燃料电池具有很高的应用潜力。所有燃料电池类型的设计挑战都受到重视,例如冷启动、冷却和加压空气供应。