o对于新的ZDNA吸收设备,立即显示存在图标;大约10分钟后,“最后连接”状态将更新。o对于在第三方EMM系统中注册的设备,在24小时内启用了设备的存在。o对于现有的ZDNA注册设备,执行“ Update ZDNA客户端”操作后显示出存在状态;大约10分钟后,“最后连接”状态将更新。o设备具有过时的“ DNA客户端”(由黄色三角形表示)必须更新到最新的客户端以查看在场信息。o在不支持的OS上运行的现有和新添加的设备仅在设备更新为最新OS(在“ Android更新”部分中)并更新为最新的ZDNA客户端后,才显示出存在状态。o在大多数情况下,存在从离线变为在线变化,但最多可能需要五分钟。o在设备中记忆杀死的情况下,从线到离线的变化可能需要长达16分钟。•使用高级设置时,导出为.pdf文件时不支持流配置。(请参阅UI配置>卷UI配置文件>卷UI配置文件>流配置)•首次启动(或从冷启动或硬重置中重新启动)时,所有运行Android 13(或更高版本)的Zebra设备必须已解锁(或使用PIN,密码或图案)在DNA云客户端应用程序之前启动。还适用于运行Android11。•运行Android 11的SDM660设备:DNA云不支持以下设备-OS更新软件包:
在过去的几十年中,人们一直在积极讨论“非热”微波辅助微生物灭活机制。这项工作介绍了一种新颖的非侵入式声学测量方法,测量家用微波炉腔体磁控管的工作频率为 fo = 2.45 ± 0.05 GHz(λ o ~ 12.2 cm),并在时间域(0 至 2 分钟)内进行调制。测量结果揭示了腔体磁控管阴极灯丝冷启动预热周期和脉冲宽度调制周期(开启时间、关闭时间和基准周期,其中开启时间减去基准时间 = 占空比)。波形信息用于重建历史微波“非热”均质微生物灭活实验:其中自来水用于模拟微生物悬浮液;冰、碎冰和冰浆混合物用作冷却介质。实验使用文字、图表和照片进行描述。确定了影响悬浮液时间相关温度曲线的四个关键实验参数。首先,当所选工艺时间 > 时间基准时,应为每一秒的微波照射使用腔体磁控管连续波额定功率。其次,由于外部碎冰和冰浆浴的热吸收率不同,它们会产生不同的冷却曲线。此外,外部浴可能会屏蔽悬浮液,从而延缓时间相关的加热曲线。第三,由于周围没有冰块,内部冷却系统要求悬浮液直接暴露在微波照射下。第四,四个独立的水假负载隔离并控制悬浮液的热传递(传导),从而将一部分微波功率从悬浮液中转移出去。使用能量相空间投影将 800 W 时 0.03 至 0.1 kJ ⋅ m −1 的“非热”能量密度与报道的 1050 ± 50 W 时 0.5 至 5 kJ ⋅ m −1 的热微波辅助微生物灭活能量密度进行比较。
摘要:乙醇已成为化石燃料的一种有希望的替代品,但其使用可以导致润滑剂的大量稀释,尤其是在冷启动或交通繁忙的过程中。这种稀释会影响添加剂的性能,包括摩擦性修饰剂等摩擦二硫代氨基甲酸酯(MODTC),旨在减少在极端接触条件下的摩擦。先前的研究表明,乙醇可能会影响MODTC的性能,促使该研究的目的是研究乙醇对MODTC TRIPOFILMS的影响及其在边界润滑条件下的摩擦反应。因此,用含有不同乙醇浓度的MODTC的完全配方的润滑剂进行了互助摩擦学测试。结果表明,临界乙醇稀释水平通过MODTC激活抑制危害降低,从而导致类似于基础油的摩擦系数(COF)。用多乙二醇(PAO) + MODTC简单混合物测试的表面显示出与添加乙醇的COF增加。使用拉曼光谱法,X射线光电子光谱(XPS)和X射线吸收光谱在边缘结构(XANES)附近分析测试表面,揭示了硫酸盐,MOO 3,MOS 2,MOS 2和MOS X O Y化合物在与乙醇稀缺的表面上形成的互动化合物中的互动化合物。然而,乙醇的添加增加了互感的硫酸盐和MOO 3含量,而牺牲了诸如MOS 2和MOS X O Y之类的减少摩擦化合物。关键字:钼二硫代氨酸(MODTC);乙醇; TROBOFILM;摩擦修饰符;添加剂;润滑剂这些发现表明,含有MODTC的润滑剂中的乙醇稀释会产生富含氧气的界面培养基,有利于形成具有不足摩擦能力的化合物的形成。
一年前,即2022年2月24日,普京入侵乌克兰。这场违反国际法的侵略战争不仅使乌克兰的主权和生存受到质疑。这也对欧洲和平架构构成了严重威胁。经过数十年的和平、自由和安全之后,欧洲再次爆发战争。这改变了一切。对于德国联邦国防军来说尤其如此。保卫国家和联盟(再次)是德国联邦国防军的核心任务。 2014年普京非法吞并克里米亚之后,这在很长一段时间里只是一种灰色理论,如今已成为残酷的现实和迫切的需要。我们的士兵很快且直接地感受到了这意味着什么。在很短的时间内,北约大规模加强了其东部侧翼,以威慑俄罗斯,并表明与我们的盟友和伙伴的团结。德国联邦国防军为此做出了杰出贡献:向立陶宛派出了步兵,向斯洛伐克派出了爱国者导弹,向爱沙尼亚和罗马尼亚派出了欧洲战斗机,向波罗的海派出了几乎整个海上海军。这种令人印象深刻的作战准备和冷启动能力是我们 183,000 名士兵的成就。他们以高度的专业精神来应对新情况。您意识到事情随时可能变得严重,而且有时会发生得非常快。这种态度和方法值得效仿。乌克兰战争向我们展示了德国联邦国防军的服务意味着什么:在紧急情况下,我们的士兵为了我们的和平与自由献出自己的生命。当兵不同于其他任何职业。这场战争也清楚地表明了我们需要德国联邦国防军,以及我们需要它来做什么。人们对于军队、安全和国防政策的关注度以前很少如此高。德国联邦国防军需要进行全面现代化建设,这是社会罕见的广泛共识。令人痛心的是,我们花了一场可怕的战争才获得这一领悟。 2022 年 2 月 27 日,德国总理奥拉夫·朔尔茨在德国联邦议院发表历史性演讲时将这场战争描述为欧洲历史的转折点——也是德国联邦国防军历史的转折点。于是,德国联邦议院以绝对多数票设立了1000亿欧元的专项基金,用于保障德国联邦国防军的全面战备状态。这是正确且必要的。但这还不够。首批项目正在进行中。但到2022年,这笔专项资金还没有一分钱到达我们士兵的手中。采购系统过于迟缓。部队的库存账簿越来越满,但服装库、弹药库、备件仓库却没有。此外,当谈到作战准备时,重点往往集中在特殊资产和材料上。承诺的意义远不止于此。作战准备意味着德国联邦国防军拥有充足的人员。作战准备意味着现代化的基础设施。承诺意味着清晰的结构和精益的流程,从而加速而不是减慢速度。最后但同样重要的一点是,承诺意味着做出和执行决定的勇气和责任感。这适用于民事和军事各个层面。因此,该专项基金只能作为德国联邦国防军实现冷启动、全面运作和装备精良的中间步骤。这份年报也明确了这一点。年度报告不是专项基金的进度报告。这也不是一份关于有多少辆坦克在行驶、有多少架欧洲战斗机在飞行、有多少艘护卫舰在游泳的报告。年度报告的内容远不止这些。它从多样性和广度审视德国联邦国防军,以及大大小小的部队所面临的担忧、需求和挑战。他指出,对我们的士兵来说,伤口的伤害往往比丢失或无法使用的大型装备更大。
有效储存150组成型数据(如时间、次数、压力、速度、行程、计量、模厚、模具名称、选用条件、原料温度等)。 在线操作详细提示。 采用分级加密锁定软件数据。 输入数据时有防错提示,以防修改不当。 数据修改可通过iChen系统在线保存在中央服务器。 最先进的SMT电板组装技术,可靠性高。 64位高速CPU。 10组PID温控,在30℃~500℃之间调节,精度高。 冷启动预防、、、、、自动预热功能、、、、、喷嘴堵塞报警、、、、、树脂溢流检测。。。。。。 运行中高低温偏差设定及温控器断线检测。注射10段速度、、、、、10段压力设定。。。。。 塑化10段速度、、、、、10段压力及10段背压设定。。。。。 4组吹气,6组抽芯。 锁模、注射、顶出均采用高精度光学编码器(标配)或电位器(选配)。 储存报警历史记录,方便工艺调试及维护。 生产数量及批次控制。 配合iChen订单排单系统。 自动切换润滑设定,缺油报警。 操作动作图形显示,方便注塑机运行的监督。 循环操作时间监视,方便调整以缩短循环时间。 注射速度、压力标准图与当前图对比。 注射终点统计。 在线监视程序运行情况及各种输入、输出、定时器、计数器的状态,方便调试和维护。支持104个输出、104个输入、200个定时器及20个计数器状态监控。模具数据可自由选取、复制及删除。可利用电脑内预设模具数据,保存设定时间。亦可外接SD卡输入数据。智能故障检测及辅助操作指示。支持热流道温度控制(60腔,选配)。全面支持iChen网络管理系统。
为遵守现有的二氧化碳法规,必须在能源系统中大规模引入可再生能源。考虑到目前的电力池,可再生能源的大量使用意味着化石燃料发电厂的效率和经济损失很高,因为它们主要用于调节系统,预计会经常停机。在此框架下,建议将联合循环发电厂 (CCPP) 与储能技术(如电转气 (PtG))相结合,通过转移瞬时过剩电力来实际减少其最低投诉负荷。电转气通过水电解产生氢气,然后与二氧化碳结合产生甲烷。本研究的主要创新之处在于通过使用电转气作为减少最低投诉负荷的工具,提高了联合循环的灵活性和经济性。本研究的主要目标是量化不同停机和常规启动情况下的成本降低。案例研究分析了 400 MW 发电总功率的联合循环,最低投诉负荷为 30%,而通过 40 MW 发电转气电厂,该负荷实际上可以降低到 20%。定义了八种场景,以比较热启动、温启动和冷启动下常规运行的参考案例与发电转气辅助运行。此外,还分析了不同负荷(30-50-70%)的发电转气辅助运行场景。这些场景还考虑了在调度低于最低投诉负荷的时期内发生的临时需求高峰。在这种情况下,传统电厂的响应时间非常有限,而发电转气辅助 CCPP 可以快速满足峰值。技术经济模型量化了所需的燃料、总功率和净功率、排放量以及每种情景下的总成本和收入以及每小时的净差额利润。根据所得结果的分析,不建议在热启动、温启动或冷启动时以最低负荷运行 PtG 辅助 CCPP。但是,对于每种类型的启动,采用建议的系统在超过 50% 的部分负荷下运行可实现重要的边际利润,从而避免停机并提高容量系数。
•意大利巴里理工大学Yashar Deldjoo(deldjooy@acm.org)•Shuai Zhang,美国亚马逊网络服务AI(shuaizs@amazon.com)•伯恩德·路德维格,德国德国雷格斯堡大学(bernd.ludwig@ur.line.de) lina.yao@csiro.au)•新加坡南南技术大学的Aixin Sun(axsun@ntu.edu.sg)生成的推荐系统(Gen-recsys),由大语言模型(LLMS)和其他最新的生成性体系结构(例如,effifusion型模型)(例如,扩散模型),介绍了个性化的新方法。与返回物品标识符静态列表的传统管道不同,Gen-Recsys可以发明库存外的建议(例如,提出了新想象中的衣服),产生针对用户反馈的丰富文本解释(例如,多转化的多转化理性(例如,解决特定的critiques)的多转化理性),并从事构成对话的折叠对话。这些扩展的功能为增强用户体验提供了新的机会。除了这些机会之外,Gen-Recsys还提出了新的挑战和风险。在不受管制的Web数据中训练的模型可能会继承和扩大与性别,语言,宗教和其他敏感属性有关的偏见。这些系统可能会无意间提出不存在的项目(所谓的“项目幻觉”),产生私人或有偏见的信息,并通过说服力的文本改变用户的看法。经典的离线评估主要衡量固定库存上的预测精度,不适合量化生成产量的更广泛含义。本期有关推荐系统(TOR)的ACM交易特刊(TORS)邀请了原始研究,审查文章,方法论论文以及研究生成推荐系统(Gen-Recsys)的技术和社会维度的透视文章。提交可能关注算法发展,道德准则,用户研究或全面评估策略。我们鼓励手稿阐明现实世界的应用程序,新颖的数据集和跨学科合作。主题:我们欢迎对(但不限于)与Gen-Recsys相关的以下领域提交:●生成架构:gans,vaes,vaes,扩散模型,LLMS或多模式基础模型的集成到建议管道中;用于混合,特定于上下文的建议的检索授权生成(RAG)。●个性化内容和解释生成:生产以用户为中心的说明,文本评论,叙述或合成项目(例如,服装建议,合成媒体)的新方法。●数据稀疏和冷启动解决方案:诸如合成数据生成,传输学习或跨领域的方法,以减轻稀疏或新用户方案。●对话和交互式推荐人:多转对话,实时更新和基于LLM的代理,以完善查询并预测未来的交互。●可伸缩性和效率:减少推理潜伏期和资源需求(例如蒸馏,修剪)的方法,同时保留个性化。
ICR0537 家用热泵热水器的加速寿命试验 Van D. Baxter、R. L. Linkous 橡树岭国家实验室 (ORNL),大楼。3147,M/S 6070 Oak Ridge,田纳西州,美国,865/574-2104,865/574-9338,vdb@ornl.gov 摘要 十个原型“嵌入式”热泵热水器 (HPWH) 被放置在环境控制的测试设施中,并经过约 7300 个压缩机工作循环的耐久性测试程序。这项耐久性测试旨在代表七到十年的正常压缩机循环,以满足住宅的热水需求。在耐久性测试运行期间,HPWH 的热泵部分没有出现压缩机、蒸发器风扇或电源继电器故障。事实证明,第一代控制系统是设备中最不可靠的组件。每个控制器包括四个温度传感器,用于监控关键控制参数。在总共 40 个传感器中,有 16 个在耐久性计划期间发生故障。这些故障是由于传感器引线接头问题造成的。所有设备的效率测量表明,原型 HPWH 的效率至少是传统电阻热水器的两倍。简介 本研究中所研究的 HPWH 旨在成为家用电热水器 (EWH) 的“嵌入式”替代品,如图 1 所示,为剖面示意图。该设计基于最初于 1999 年开发的专利概念(美国专利号5,906,109,1999 年 5 月;美国专利号5,946,927,1999 年 9 月)。Baxter 和 Linkous (2002) 在一份详细的项目报告中全面描述了该 HPWH 设计的开发。2000 年夏末,为本文所讨论的耐久性测试计划建造并交付了十台原型机。另外 18 台机组被制造出来并送往 ORNL,用于 DOE 国家现场测试计划(Murphy 和 Tomlinson 2002)。HPWH 机组的大小与垂直圆柱体相当,高 5 英尺(1.5 米),直径 2 英尺(0.6 米)。一个小型空气对水蒸汽压缩热泵机组(约 3400 Btu/h (1 kW) 加热能力),使用 R-134a 作为制冷剂,位于传统 EWH 水箱(容量 45.9 加仑(173.5 升))的顶部。蒸发器的热量由环境空气提供。该机组的冷凝器盘管缠绕在水箱底部的三分之二处,为水提供热量。根据设计,小型压缩机从冷启动到加热一罐水需要 6-8 小时,或者在抽取 10.7 加仑(40.4 升)水后需要大约 1.5-2 小时才能将水罐加热。包括传统的 EWH 电阻加热元件(一个在水箱顶部,一个在水箱底部),为热泵装置提供备用(或在热泵发生故障时提供紧急加热)。