S G 1 S 钢结构用钢 S235JR EN 10025-2 1 .0038 S355N EN 10025-3 1 .0545 S235J0W EN 10025-5 1 .8958 S460Q EN 10025-6 1 .8908 S350GD EN 10326 1 .0529 P 压力容器用钢 P265GH EN 10028-2 1 .0425 P355NH EN 10028-3 1 .0565 L 管道用钢 L360GA EN 10208-1 1 .0499 E 工程钢 E295 EN 10025-2 1 .0050 GE240 EN 10293 1 .0446 B钢筋 B 500B DIN 488-1 1 .0439 Y 预应力钢 Y 1770C EN 10138-2 - R 轨道用钢 R320Cr EN 13674-1 1 .0915 D 冷成型用扁平材 DC04 EN 10130 1 .0338 H 冷成型用高强度钢扁平材 HC380LA EN 10268 1 .0550
S G 1 S 钢结构用钢 S235JR EN 10025-2 1 .0038 S355N EN 10025-3 1 .0545 S235J0W EN 10025-5 1 .8958 S460Q EN 10025-6 1 .8908 S350GD EN 10326 1 .0529 P 压力容器用钢 P265GH EN 10028-2 1 .0425 P355NH EN 10028-3 1 .0565 L 管道用钢 L360GA EN 10208-1 1 .0499 E 工程钢 E295 EN 10025-2 1 .0050 GE240 EN 10293 1 .0446 B钢筋 B 500B DIN 488-1 1 .0439 Y 预应力钢 Y 1770C EN 10138-2 - R 轨道用钢 R320Cr EN 13674-1 1 .0915 D 冷成型用扁平材 DC04 EN 10130 1 .0338 H 冷成型用高强度钢扁平材 HC380LA EN 10268 1 .0550
3.1 简介 ---------------------------------------------------------------------------------- 6 3.2 声音传输的基本原理 ------------------------------------------------------------------ 6 3.3 测量方法 ---------------------------------------------------------------------------------- 9 3.3.1 单一数值评级 ----------------------------------------------------------------------------------10 3.4.2 频谱适应术语 ----------------------------------------------------------------------------------10 3.3.3 频率范围 ----------------------------------------------------------------------------------10 3.4 冷成型钢结构的声学特性 ------------------------------------------------------------------10 3.4.1 分隔墙 --------------------------------------------------------------------------------------------------12 3.4.2 分隔地板 --------------------------------------------------------------------------------------------------13 3.4.3 撞击声传输 --------------------------------------------------------------------------------------------------14
BioDur 316LS 不锈钢是电渣重熔 (ESR) 或真空电弧重熔 (VAR) 的低碳、高镍和钼 316 不锈钢。二次优质熔炼步骤 (ESR 或 VAR) 可提高清洁度。化学改性旨在最大限度地提高该合金的耐腐蚀性并提供无铁素体的微观结构。该合金是非磁性的,即使在严格的冷成型操作之后也是如此。
3.2.2 面板饰面:面板饰面为 24 号规格 [最小基钢厚度为 0.022 英寸 (0.55 毫米)] 冷成型镀锌钢板,两面锌涂层重量为 0.056 磅/平方英尺 (272 克/平方米)。饰面在工厂涂有光滑的白色 4 密耳 (0.102 毫米) 未增塑聚氯乙烯 (uPVC) 涂层。钢材为符合 EN 10346 的 DX51D 级钢材,规定最小极限抗拉强度为 40 ksi (280 MPa),屈服强度为 33 ksi (230 MPa)。饰面宽 48 英寸 (1219 毫米),长 122 英寸 (3100 毫米),宽 48 英寸 (1219 毫米),长 146 英寸 (3700 毫米)。饰面由经批准的质量文件中注明的制造商提供。
'_ '~海上(码头)船舶故障,脆性断裂的概率成为焦点。与船舶故障相关的数据具有很好的相关性,因此,从激发这些研究的研究中可以学到很多东西。非船舶故障数据不存在类似的相关性,因此进行此项调查是为了补充船舶故障的研究。总共研究了 64 个结构故障以及天然气输送管道故障。这些故障发生在铆钉和焊接结构中,例如油箱桥梁、压力容器、烟囱、PM 库存、电力铲子,以及 M 天然气输送管线。结果表明,脆性破坏的历史至少可以追溯到 1879 年。结论是:(1)非船舶结构中的脆性破坏与船舶中的脆性破坏是相同的现象;(2)多种类型的船舶结构都会发生脆性破坏;(3)脆性断裂可以穿过铆钉接头;(4)没有证据表明随着焊接的出现,脆性破坏的发生率是降低还是增加;(5)与其他因素一起,热应力可能很重要;(6)残余应力不是脆性破坏的主要因素,但这种应力与其他因素一起,会引发表面破坏;(7)冶金变量的影响很重要; (S) 冷成型可提高脆性破坏的敏感性,但由于数据缺乏,其作用无法评估;(9) 在有数据的情况下,板的冲击强度一般低于破坏温度;(10) 在大多数情况下,非船舶脆性破坏的断裂起源于纤维制造缺陷,少数断裂起源于设计缺陷;(11) 似乎在所有情况下,断裂都起源于几何连续面; (12) 没有证据表明这些失效结构能显示各种焊接工艺对脆性断裂敏感性的影响;(13) 除焊接质量特别差的情况外,焊接焊缝没有断裂的趋势;(14) 绝大多数非船舶脆性断裂似乎发生在完全静态的条件下;(1.5) 结构的 AGC 似乎与脆性断裂无关;(10) 大多数工程规范允许使用已知特别容易发生脆性断裂的钢材。同时,除一个规范外,所有规范都将应力水平保持在极保守的值;(17) 最后,证明了脆性断裂是多种因素共同作用的结果。船。我没有任何一种易加工的材料能够完全防止其断裂,而且目前也没有已知的试验能够根据小试样的行为准确预测给定钢材在可能发生结构脆性破坏的情况下的性能,因此,精心的设计、材料的选择和良好的工艺对于防止结构脆性破坏至关重要。