限制 排除:EPD 并不表明已达到任何环境或社会绩效基准,并且可能存在其未涵盖的影响。LCA 通常不涉及原材料提取对特定地点的环境影响,也不旨在评估人类健康毒性。EPD 可以补充但不能取代旨在解决这些影响和/或设定绩效阈值的工具和认证 - 例如 1 类认证、健康评估和声明、环境影响评估等。 结果准确性:EPD 通常依赖于对影响的估计;对任何特定产品线和报告的影响,对影响的估计准确度各不相同。 可比性:本文件中钢铁产品的环境影响结果基于声明的单位,因此无法提供足够的信息来进行比较。在不了解钢铁产品的物理特性如何影响建筑层面的精确功能的情况下,不得使用这些结果进行比较。在尝试进行比较之前,应将环境影响结果转换为功能单元基础。请参阅第 3 节了解更多 EPD 可比性指南。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
摘要:采用快速熔化和凝固的快速传热增材制造方法生产的合金零件与传统工艺制成的材料相比,具有不同的微观结构、特性和性能。本研究比较了采用粉末床熔合工艺制备的SS316L与冷轧SS316L的耐腐蚀和氧化性能。此外,对不锈钢表面氧化膜进行了全面评估,因为该膜对抗腐蚀和氧化性能的影响最大。研究了热处理对增材制造SS316L耐腐蚀和氧化性能的影响。SS316L具有由亚晶胞形成的微观结构,其中局部浓缩的合金元素形成稳定的钝化膜。因此,它比传统的冷轧材料具有更高的耐腐蚀和抗氧化性能。然而,已证实热处理会去除亚晶胞,从而导致耐腐蚀和氧化性能的下降。
DED NASA HR-1 开发面临的挑战:化学和微观结构不均匀性 1. 沉积态合金表现出不同程度的化学偏析和微观结构梯度。 2. 锻造合金可以通过热/冷轧(或锻造)和热处理进行优化,以消除化学偏析和微观结构不均匀性 3. 但 AM 材料的微观结构只能通过热处理进行优化 4. 因此,开发适当的热处理对于 AM 合金开发的成功至关重要。 5
描述了超高强度结构钢。从成分、机械性能、可用形式、成型特性和可焊性等方面讨论了各种超高强度钢。描述了该技术的最新发展,并给出了说明性应用。讨论的超高强度钢系列包括中碳低合金可硬化钢、中高合金可硬化钢、高镍马氏体时效钢、可硬化不锈钢和冷轧不锈钢。
28. J. Amri, T. Souier, B. Malki, B. Baroux, “冷轧不锈钢板最终退火对钝化膜电子性能和抗点蚀能力的影响”,腐蚀科学,50 (2008) 431-435。29. B. Malki, T. Souier, B. Baroux, “合金元素对不锈钢点蚀的影响:一种建模方法”,电化学学会杂志。155 (2008) C583-C587。
钛基储氢合金具有较高的吸氢能力、较低的放氢温度以及丰富的资源,是最常见的固态储氢材料之一。本文主要介绍了钛基储氢合金的几种不同制备方法对储氢性能的影响,包括传统制备方法(冶炼、快淬和机械合金化)和新方法(冷轧、等通道转角压制和高压扭转)。对上述制备工艺对应的钛基合金的组织分析和储氢性能进行了较为深入的总结。研究发现,通过强塑性变形(SPD)引入少量的位错、晶界、亚晶界和裂纹等晶格缺陷,有利于改善合金的吸/放氢动力学特性,但SPD可能引起合金成分不均匀和残余应力增加,不利于储氢能力的提高。未来有望将掺杂、改性等新方法、新技术应用于钛基储氢合金,以期在实际应用方面取得突破。
美国质量协会 (ASQ) ASQ-Z1.4 — 按属性检验的程序、抽样和表格(国防部采用)。(可从 www.asq.org 获取此文件的副本。)ASTM INTERNATIONAL ASTM A1008/ - 钢材、板材、冷轧、ASTM A1008M 碳、结构、高强度低合金、具有改进的成形性要求硬度、溶液硬化和可烘烤硬化的高强度低合金的标准规范(DoD 采用) ASTM B152/B152M - 铜板、带、板和轧制棒的标准规范(DoD 采用) ASTM B633 - 钢铁上锌电镀层的标准规范(DoD 采用) ASTM D471 - 橡胶性能的标准测试方法 - 液体的影响(DoD 采用) ASTM F15 - 铁-镍-钴密封合金的标准规范 ASTM F1249 - 水蒸气透过率的标准测试方法使用调制红外传感器通过塑料薄膜和薄片(这些文件的副本可从 www.astm.org 获得。)静电放电协会 (ESD) ANSI/ESD STM 11.11 - 平面材料的表面电阻测量 - 保护静电放电敏感物品的标准测试方法 ANSI/ESD STM 11.31 - 评估静电放电屏蔽材料的性能 - 袋子,标准测试方法(这些文件的副本可从 www.esda.org 获得。)
前言 _________________________________________________________________________________ 在两个或多个辊子之间进行冷热金属加工早在工业革命之前就已经存在。事实上,列奥纳多·达·芬奇在 1519 年去世前就因发明金属加工轧机而受到赞誉。 大多数人想到轧机时,都会想到当今黑色金属(铁、碳钢和不锈钢)和有色金属(铜、黄铜、铅等)综合或电弧炉 (EAF) 钢厂的大型机械,以及珠宝商用来减少贵金属厚度或在金属表面形成图案以制成链条或环的小型手动曲柄轧制装置。 轧机有许多功能。它们可用于非常精确地(+/-.0001”)减小材料的厚度或压缩材料以在整个带材中形成均匀的密度或在材料的一侧或两侧进行表面光洁度,这些只是最常见的方法。轧机不是标准机床,也不是为库存而制造的。它们是根据订单设计和制造的,专门用于完成最终产品或工艺。在美国工业革命期间,美国一度在热轧和冷轧、板材轧机、板坯轧机和初轧机方面处于世界领先地位。Mesta、United、Blaw-Knox、Lewis、Continental 和 Bliss 等公司建造了一些最大的轧机