背景 ARBEC FOREST PRODUCTS INC. 产品 FORESTIERS ARBEC INC. (ARBEC) 购买了位于米拉米奇市的定向刨花板 (OSB) 工厂,该工厂原由 Weyerhaeuser Company Limited 拥有和经营。OSB 工厂于 1996 年投入使用,并以 Eagle Forest Products 的名义开始运营。Weyerhaeuser 随后于 2000 年 6 月购买了该工厂,并运营该设施直到 2007 年 1 月工厂因市场状况而关闭。ARBEC 于 2012 年秋季开始运营 OSB 工厂。米拉米奇的工厂生产尺寸为 4 英尺 x 8 英尺的 OSB 板。OSB 板主要用于住宅建筑。面板用于墙面护套、屋顶和结构地板。米拉米奇生产的大部分产品销往加拿大和美国。该工厂约有 150 名员工。工艺描述 简介 在米拉米奇的 OSB 工厂,所有木材都以圆木的形式通过卡车运送到现场,通常长度为 8 英尺。圆木通过两个自清洁闭环热池之一进入工厂,开始制造过程。热池的作用是在剥皮前松开木材上的树皮,并在冬季解冻冻结的原木。从热池出来的木材进入两个环形剥皮机之一,以去除原木上的树皮。然后,在三个刨片机之一中,将原木切成大约 0.03 英寸厚的小木条。木条在三个单程干燥机之一中干燥,其中刨片的含水量从 75 - 100 % 降低到 1.5 - 3 %。干燥的刨片进入两个大直径滚筒混合机之一,在那里与乳化蜡和液态树脂混合。然后,薄片在成型机上被排列成层,然后在高压和高温下压制以形成定向刨花板。然后将板切割成合适的尺寸,包装和储存,然后运送给客户。压机、热池和一般建筑物的热量是由炉中木材残余物的燃烧产生的。下面提供了热能系统、干燥机和空气污染控制设备的更详细描述。热能系统剥皮过程中产生的所有树皮和湿木材残余物都作为燃料在燃木炉中燃烧,为工厂产生热量。燃木炉由 GTS Energy Systems 制造,热额定值为 8650 万 kJ/小时(8200 万 BTU/小时)。轻油(#2 燃料油)用作 GTS 炉的备用燃料。燃木炉燃烧室内的温度保持在 450°C 至 1000°C(842°F 至 1832°F)之间。来自燃烧室的热气体通过一个系统来加热加热线圈内的导热油。加热后的导热油被泵送到各种
糖尿病(DM)是一种慢性疾病,定义为持续性高血糖(1)。2011年DM的流行率在全球范围内为3.66亿,到2030年将上升到5.52亿(2)。dm与一系列并发症有关,包括微血管和大血管条件。DM的微血管并发症涉及对小血管的损害,尤其是在眼睛(视网膜病)和神经(神经病)中。视网膜病变会导致视力障碍甚至失明,而神经病会导致四肢麻木,刺痛或疼痛。在严重的情况下,它可能导致足部溃疡或截肢。另一方面,DM的大血管并发症与大血管有关,可能影响各种器官。缺血性心脏病,其中血液流向心脏肌肉,中风,中断了大脑的血液流向大脑,这是由于DM而可能发生的两个最常见的大血管问题。这些情况增加了糖尿病患者心脏病发作和中风的风险。微血管和大血管并发症都显着促进与DM相关的发病率和死亡率。因此,管理和预防这些并发症是糖尿病护理的重要方面,需要针对血糖控制,血压管理,脂质控制和生活方式改良的全面策略(3)。与DM相关的MSD的迹象包括肌肉疼痛,关节疼痛或僵硬,关节迁移率降低,关节肿胀,畸形以及手臂或腿部的销钉和针的感觉。某些MSD是糖尿病患者独有的。这些并发症显着影响糖尿病患者的生活质量和预期寿命。尽管由于新抗糖尿病药物的可用性,DM患者的预期寿命增加,但与其他并发症相比,MSD和相关疾病的患病率仍然受到研究(4-7)。DM中MSD的确切机制尚不清楚,但胶原蛋白沉积和结缔组织中进行性非酶糖基化的变化可能是原因(8,9)。MS并发症会影响身体的不同部位。软组织疾病,例如Cheiroarthropathy,腕管综合征,触发纤维,Dupuytren的染色器以及冻结的肩膀。charcot关节炎和痛风关节炎是糖尿病患者联合疾病的例子。骨骼受累,例如骨质疏松性和非遗传性疏松性骨折以及特发性骨骼肌肥大(10,11)。涉及DM患者(例如手腕,颈部,脊柱和膝盖)的不同位置(12)。糖尿病持续时间,葡萄糖水平控制,性别和年龄是肌肉骨骼并发症的某些危险因素(13,14)。各种研究,例如病例对照或队列研究,都在世界范围内进行,但这些研究的结果是有争议的。这种情况对全球临床和公共卫生决策具有影响,尤其是在发展中国家。确定DM和MSD之间的确切关联可能会帮助临床医生和专家减少影响并改善DM患者的生活质量。以及这项荟萃分析的结果有助于制定和更新临床指南,并改善该领域的循证医学(EBM)知识和政策。,基于此信息和先前研究的结果,DM是
丰田高地混合动力电池的平均寿命在8-10年或约100,000至150,000英里之间,但根据情况,它可以持续到200,000至300,000英里。大多数混合动力电池通常持续80,000至100,000英里。丰田提供10年或150,000英里的保修。取代电池的成本范围从2,000美元到4,000美元不等,具体取决于诸如模型年度和经销商政策等因素。影响电池寿命的因素包括气候,驾驶习惯,维护和充电周期。 驾驶员应监视燃油效率和性能降低的迹象,因为这些驱动器可能表明需要更换。 定期检查和维护可以帮助延长电池的寿命并提高整体车辆性能。 总而言之,尽管平均寿命约为8 - 10年,但了解如何通过仔细的驾驶条件和定期维护来最大化电池寿命可以带来重大的好处。 以较慢的速度驾驶可以缩短电池寿命,同时持续驾驶快速驾驶会更快地将其磨损。 极端温度也可以将电池寿命降低到低于冻结的情况下最多20%。 在温和气候的区域中,电池往往持续更长的时间。 定期检查和维护电池端子和连接以防止腐蚀并确保正常运行至关重要。 丰田建议在所有者手册中遵循其指南,以进行最佳的混合系统维护。 您充电和排放电池的次数也会影响其寿命。 谨慎的驾驶习惯也起着重要作用。影响电池寿命的因素包括气候,驾驶习惯,维护和充电周期。驾驶员应监视燃油效率和性能降低的迹象,因为这些驱动器可能表明需要更换。定期检查和维护可以帮助延长电池的寿命并提高整体车辆性能。总而言之,尽管平均寿命约为8 - 10年,但了解如何通过仔细的驾驶条件和定期维护来最大化电池寿命可以带来重大的好处。以较慢的速度驾驶可以缩短电池寿命,同时持续驾驶快速驾驶会更快地将其磨损。极端温度也可以将电池寿命降低到低于冻结的情况下最多20%。在温和气候的区域中,电池往往持续更长的时间。定期检查和维护电池端子和连接以防止腐蚀并确保正常运行至关重要。丰田建议在所有者手册中遵循其指南,以进行最佳的混合系统维护。您充电和排放电池的次数也会影响其寿命。谨慎的驾驶习惯也起着重要作用。锂离子电池(通常用于混合动力),在一定数量的周期后显示出磨损。重负荷或在山上开车会给混合动力电池带来更大的压力,尤其是当它主要用于城市驾驶时。通过了解这些因素,驾驶员可以通过行为调整,预防性维护和对环境条件的认识来优化其高地混合动车的电池寿命。标志表明是时候替换您的Highlander混合动力电池了,包括减小驾驶范围,仪表板警告灯,缓慢加速和不寻常的电池行为(例如过热)。如果您注意到这些标志中的任何一个,则可能有必要更仔细地检查电池。用IB(增加爆发)方法重写的原始文本:高地所有者,当心不寻常的电池行为!过热表明正在进行的潜在失败。电池应在标准温度范围内运行;任何过多的东西都可能表明故障或迫在眉睫的故障。国家可再生能源实验室强调监测这些标志以防止进一步损坏并确保安全。通过关注这些警告标志,驾驶员可以就及时更换其Highlander混合动力电池做出明智的决定。为了延长您的高地混合动力电池的寿命,请遵循以下简单但至关重要的做法:定期维护是关键!经过认证的技术人员的例行检查评估电池状况,检查连接,清洁终端并确保冷却系统正常运行。平滑而逐渐的驾驶可减少电池的负载。国家可再生能源实验室(NREL,2020)的一项研究表明,定期维护可以提高电池寿命高达30%。避免进行侵略性加速和频繁制动,这会使电池电量过滤。监控电池健康有助于及时干预。使用板载诊断工具或应用程序定期检查电池的充电状态和整体健康状况。美国环境保护局(EPA)建议将电池电量保持在20%至80%之间,以防止深层排放,这可以缩短电池寿命。优化充电条件也至关重要。充电时避免高温,因为热和冷会损坏电池电池。要保留电池寿命,请在适度的环境中充电。发表在《电源杂志》上的一项研究(Smith等,2022)指出,在最佳温度下充电电池的寿命增加了约25%。遵循这些做法可以显着提高您的Highlander混合动力电池的寿命,从而确保随着时间的推移可靠的性能。更换高地混合动力电池可能会很昂贵!平均成本从2,500美元到4,500美元不等。此价格取决于电池类型,人工成本和位置等因素。根据AAA的说法,由于其先进的技术,混合动力电池很昂贵。更换成本包括电池和人工。人工成本取决于经销商费率或独立的机械费用。有些地方以较低的价格提供翻新的电池。美国能源部强调,电池技术的进步提高了能量密度并降低成本。效率较高的电池可能会导致降低终身成本,而反对性能和寿命。几个因素影响了这些成本,包括电池的类型,人工和位置。混合动力车所有者在混合动力车主中取代电池的重要性面临着替换电池的至关重要的需求,这受到年龄,驾驶习惯和环境条件等因素的影响。频繁的深层排放和极端天气会显着影响电池寿命。研究表明,将近30%的混合动力车主需要在所有权期间更换电池,平均更换发生在100,000英里的大关附近。更换混合动力电池会影响车辆性能和转售价值。新电池恢复了效率和范围,使其吸引了潜在的买家。在环境上,用更新版本代替较旧的电池可以通过利用更有效的技术来减少整体排放。要解决高替换成本,消费者可以研究电池保修选项并考虑电池回收计划。常规维护和环保驾驶习惯可以延长电池寿命。利用预测维护应用程序还可以帮助监控电池健康并优化性能。Toyota Highlander Hybrid等混合动力汽车的保修覆盖范围通常持续5 - 10年或最高150,000英里,其中一些州提供了延长的保修。了解这种保修对于寻求全面保护其混合动力组件的消费者至关重要。国家公路交通安全管理局强调,此类保证提供了更广泛的保护,减轻了对与混合技术有关的昂贵维修的担忧。要保持高地混合动力电池健康,请遵循以下关键维护实践:定期检查电池连接,保持最佳的充电水平,监控温度,确保适当的驾驶习惯,安排专业的检查并定期使用车辆。有效的电池维护涉及一种整体方法,每种练习都可以最大程度地提高电池寿命,同时最大程度地减少意外成本。定期检查电池连接:通过清洁端子来确保清洁和安全的连接,以提高电导率和整体系统效率。保持最佳充电水平:保持电池在20%至80%之间,以提高寿命,进行定期旅行以保持电池充电。监视温度极端:通过避免高温和极度冷的防护电池性能,因为升高的温度可以缩短电池寿命高达30%。确保适当的驾驶习惯:通过平滑的加速和逐渐停止减少电池的压力,而积极的驾驶可以增加电池的工作量。安排专业检查:通过安排例行检查来识别隐藏问题并确保所有组件正常运行,利用电池护理中的专家知识。定期使用车辆:通过定期使用车辆来防止电池耗尽,每周至少驾驶一次以保持电池状况良好。
希望,H.(2010)。 Holm 的顺序 Bonferroni 程序。 Antonacci , Y.、Barà , C.、Zaccaro , A.、Ferri , F.、Pernice , R. 和 Faes , L. (2023)。时变信息测量:应用于脑心相互作用的信息存储的自适应估计。网络生理学前沿,3,1242505。Asadzadeh, S., Rezaii, T., Beheshti, S., Delpak, A., & Meshgini, S. (2020)。系统评价卵源定位技术及其在脑异常诊断中的应用。神经科学方法杂志,339,108740。Averta, G.、Barontini, F.、Catrambone, S.、Haddadin, G.、Held, JP、Hu, T.、Jakubowitz, E.、Kanzler, CM、Kühn, J.、Lambarcy, O.、Leo, A.、Obermeier, E. 和 Ricciardi, E. (1999)。.、Schwarz, A.、Valenza, G.、Bicchi, A. 和 Bianchi, M. (2021)。 U-limb:关于健康和中风后手臂运动控制的多模式、多中心数据库。 GigaScience,10(6),giab043。 Babo-Rebelo、M.、Wolpert、N.、Adam、C.、Hasboun、D. 和 Tallon-Baudry、C. (2016)。心脏监测功能是否与默认网络和右前岛叶中的自我相关?伦敦皇家学会哲学学报。 B 系列,生物科学,371 (1708),20160004。Bagur, S., Lefort, J. M., Lacroix, M. M., de Lavilléon, G., Herry, C., Chouvaeff, M., Billand, C., Geoffroy, H., & Benchenane, K. (2021)。呼吸驱动的前额叶振荡可以独立于启动而调节由条件性恐惧引起的冻结的维持。自然通讯, 12(1), 2605. Barà, C., Zaccaro, A., Antonacci, Y., Dalla Riva, M., Busacca, A., Ferri, F., Faes, L., & Pernice, R. (2023)。用于评估心跳引起的皮质反应的信息存储的局部和整体测量。生物医学信号处理和控制,86,105315。Benarroch,EE(1993)。中央自主神经网络:功能组织、功能障碍和观点。在《梅奥诊所学报》(第 68 卷,第 988-1001 页)。爱思唯尔。 Benarroch,EE(2012)。中枢自主神经控制。在自主神经系统入门书中(第 9 - 12 页)。爱思唯尔。 Candia-Rivera,D.(2023 年)。根据庞加莱图得出的交感神经-迷走神经活动测量值来模拟大脑-心脏的相互作用。方法X、10、102116。Candia-Rivera, D.、Catrambone, V.、Barbieri, R. 和 Valenza, G. (2022)。双向皮质和周围神经控制对心跳动力学的功能评估:热应力的脑心研究。神经图像, 251, 119023。Candia-Rivera, D., Catrambone, V., Thayer, J. F., Gentili, C., & Valenza, G. (2022)。心脏交感迷走神经活动引发大脑 - 身体对情绪唤起的功能性反应。美国国家科学院院刊,119(21),e2119599119。 Candia-Rivera、D.、Catrambone、V. 和 Valenza、G. (2021 年)。脑电图电参考在评估脑-心功能相互作用中的作用:从方法论到用户指南。《神经科学方法杂志》,360,109269。Candia-Rivera, D.、Norouzi, K.、Ramsøy, TZ 和 Valenza, G. (2023)。精神压力下上升式心脑通讯的动态波动。《美国生理学-调节、整合和比较生理学杂志》,324 (4),R513 – R525。Catrambone, V.、Averta, G.、Bianchi, M. 和 Valenza, G. (2021)。走向脑-心计算机接口:使用多系统方向估计对上肢运动进行分类的研究。神经工程杂志,18 (4),046002。Catrambone, V.、Greco, A.、Vanello, N.、Scilingo, EP 和 Valenza, G. (2019)。通过合成数据生成模型进行时间分辨的定向脑-心脏相互作用测量。生物医学工程年鉴,47,1479 – 1489。Catrambone, V.、Talebi, A.、Barbieri, R. 和 Valenza, G. (2021)。时间分辨的脑-心脏概率信息传递估计
3D打印的医疗用途正在快速扩展,并且会改变医疗保健的大时间。这些用途可以分为四个主要领域:制造组织和器官,创建定制的植入物和假肢,对药物进行研究,并弄清楚如何将药物置于体内正确的位置。在医学中使用3D打印可以使诸如假肢,设备甚至药物之类的东西为每个人进行超级定制,这真的很酷。它还使事情变得更便宜,帮助人们更有效地工作,让任何人都可以在不需要花哨的机器的情况下设计东西,并将科学家聚集在一起从事项目。,但这并不是所有的阳光 - 在3D打印之前,仍有许多科学和监管挑战确实可以改变医疗保健。人们一直在医学上的3D打印中取得了重大进步,但他们仍在等待最具游戏规则的东西。通过3D打印制造的自定义助听器彻底改变了听力学领域,超过99%的现代助听器是针对个人用户量身定制的。人体的独特复杂性使3D打印模型对于手术制备必不可少,比传统的2D成像方法提供了更准确的表示。此外,神经外科医生可以从3D打印模型中受益,以更好地理解复杂的人体解剖结构。在许多情况下,这些模型有助于医学专业人员在手术前对患者的特定解剖学特征获得宝贵的见解。3D打印技术的最新进步正在彻底改变包括医学在内的各个领域。此外,3D打印的进步导致了定制的药物配方和新型剂型的形式,例如微胶囊和纳米舒张,这对个性化医学有希望。3D打印在医疗应用中的潜在好处包括增加定制和个性化,成本效率,提高生产率,民主化和协作。尽管有希望的应用,但3D打印仍面临一些挑战,包括不切实际的期望和炒作,安全和保安问题,专利和版权问题。虽然已经使用了某些应用程序,但例如器官打印等其他应用程序需要更多的时间来开发。可以在线找到有关3D打印医学应用程序的综合报告,其中包含详细的图像和说明。国家医学图书馆(NLM)提供了对科学文献的访问权限,并维护了一个数据库,其中包含有关医学中3D印刷的信息。但是,将其包含在其数据库中并不意味着与NLM或国家卫生研究院的内容认可或同意。最近的一篇文章回顾了将3D打印应用于医疗领域的一些最新发展,涵盖了当前的艺术状况以及用于医疗应用的3D打印的局限性。美国测试与材料学会(ASTM)国际委员会F42采用了添加剂制造(AM)来从三维数字数据中产生物理对象的技术。手术规划已演变为合并高级技术。在一项研究中,Vodiskat等。添加剂制造(通常称为3D打印)是一种制造方法,可以通过将材料融合或将材料融合到底物上或将物质融合或沉积物质来创建物体。此过程具有高度的用途,可以利用各种材料,例如粉末,塑料,陶瓷,金属,液体或活细胞。通过研究复杂的器官或解剖标本的解剖学和生理学,外科医生可以为操作创建个性化计划。3D模型使他们能够在进入手术室之前探索不同的方法并获得动手经验。此过程大大减少了操作时间并改善了结果。3D印刷患者特定的假体的最新进展使残疾人能够过正常生活。高质量的成像技术允许精确的解剖假体创建,影响包括牙科在内的各个医学领域。将尸体材料用于培训引起了道德问题和成本问题。3D打印通过从CT成像中重现复杂的解剖器官提供了一种新颖的解决方案,适用于没有尸体的情况。能够打印不同尺寸的多个副本的能力也有益于培训设施。可以直接印刷细胞的打印机的开发导致了毒性测试的细胞结构的自动产生,并针对疾病和肿瘤进行了新的治疗方法。这项技术通过允许对匹配天然细胞排列的组织的可重复打印来加速研究过程。使用3D打印模型来对复杂的先天性心脏状况进行术前计划。医学研究的应用包括生产人体器官和组织结构,将它们与模仿本地人体器官的功能相结合。下一步是在操作过程中打印可移植的器官或器官,彻底改变医学。药物输送也将随着3D打印成为药品不可或缺的一部分,可以实现指定剂量和持续的释放层。使用3D打印技术可以实现个性化治疗,并通过创建针对其解剖结构的定制药物输送设备来帮助患者减少药物。这些进步表明,3D打印正在改变医学,许多应用程序使进行详尽的审查变得具有挑战性。最近的几项研究集中在特定领域,例如组织和器官的医学成像,手术和生物打印。本综述旨在通过研究各种应用程序(包括个性化处理,术前计划模型和定制的药物输送设备)来检查2014年以来的发展,从而证明当前的艺术状况。他们采用了两种不同的市售技术来重建三名患者的缺陷,得出结论,有了良好的CT扫描数据,可以创建一种具有成本效益的3D印刷模型。另一个具有挑战性的区域是旧骨盆骨折手术,其中Wu等人。评估了在四年和9个临床病例中使用3D打印的骨盆模型进行术前计划。他们发现术前计划与术后结果之间有良好的相关性,但建议进一步研究以巩固这些模型的使用。Truscott等人。提出了3D打印模型的案例研究,这些模型可以帮助外科医生进行术前计划,从而从骨盆和股骨,眼窝和肩cap骨的CT扫描数据创建模型。他们使用激光插入技术从钛中脱颖而出,与CNC工艺相比,结论一下将材料废物最小化。研究人员使用3D打印技术成功地创建了耳朵假肢(PVDF)。假体对压力变化表现出很高的敏感性,表明在生物医学工程中使用了潜力。传统的患者特异性颅骨成形术假体很昂贵。相比之下,一种具有成本效益的方法使用丙烯酸骨水泥。但是,水泥的手动制造可能很麻烦,可能不会产生令人满意的结果。使用FDM创建了CT扫描数据的3D打印头骨,作为模板来塑造丙烯酸植入物。这种方法在临床环境中的有效性需要进一步研究。一种新型的陶瓷制造技术,结合了冻结的泡沫,实现了开放式孔连接的泡沫结构,可以用作下一代骨骼替代材料,用于个性化植入。提出了一种创建周期性蜂窝结构的设计方法,由材料制成的3D打印植入物将满足较轻的植入物的要求并满足审美和功能需求。最近的研究还使用了3D打印来再现具有精确反映个人特征的组织的巨大潜力的患者特异性组织材料。Khaled等。 Goyanes等。Khaled等。Goyanes等。3D打印模型在解剖学上是准确的,只要提供高质量的CT扫描数据。但是,它们可能不灵活,这使得在涉及大脑(大脑)的软组织的情况下进行应用。使用组合的3D打印,成型和铸造的一种建议的方法创造了逼真的,生理准确和可变形的人脑模型。研究人员已使用独特的技术成功地创建了个性化的大脑模型。这种突破允许创建解剖上准确且可变形的大脑模型,可用于手术计划或医学训练(图3)。此外,科学家还开发了具有成本效益的方法来生产人类解剖学对象的高质量复制品,以进行培训。3D打印技术的发展也导致了癌症研究的重大进步。通过使用HeLa细胞和水凝胶结构创建合成宫颈肿瘤,研究人员已经能够研究该疾病的生长和行为(图4)。这种创新的方法显示出令人鼓舞的结果,肿瘤增殖得更快并形成细胞球体。此外,生物打印已通过微流体网络引导细胞来创建复杂的组织结构。Drexel University的研究人员开发了定制的沉积设备,可以精确材料沉积和异质细胞共培养(图5)。在另一个突破中,科学家使用了3D打印的水凝胶支架来种植微藻和人类细胞的培养物。生物制造。2016; 138(4):041007。2016; 138(4):041007。微藻能够迅速生长,叶绿素含量在几天内增加了16倍。该技术有可能将氧或二级代谢物作为治疗剂提供。技术与生物学的交集导致了3D生物打印的开创性进步。康奈尔大学的研究人员成功地使用水凝胶作为细胞的脚手架打印了全尺寸三叶心脏瓣膜,展示了它们在医疗应用中的潜力。但是,他们指出原型的拉伸强度需要改进。爱丁堡的研究人员通过使用3D打印技术打印功能“迷你肝”,取得了重大进步。他们的创新在于保留3D藻酸盐水凝胶基质中脆弱的臀部细胞的生存力和多能性。这项工作对无动物的药物试验和个性化医学具有深远的影响。超出人体器官的范围,研究人员创建了一个3D形态空间,以描述各种尺度(包括细胞和动物生物)的生物结构。此工具使他们能够探索新的生物配置并研究有关进化的基本问题。此外,伦敦大学学院的研究人员还表明,在制造局部药物输送系统以治疗痤疮等疾病中,有3D生物打印的潜力。他们使用热熔体挤出将水杨酸加载到商业聚合物丝中,突出了该技术的多功能性。3D打印的多功能性可通过调整丝制剂来进行不同的剂量。3D打印技术因其在创建个性化医疗设备(包括药物片和假肢)方面的潜在应用而进行了探索。研究人员发现,立体光刻(SLA)方法可以生产具有精确接触甚至剂量输送的设备。使用桌面3D打印机成功打印了甲烯烃双层片,证明了其产生高质量药物片的潜力。他们比较了药物释放曲线,发现在14小时剂量周期中,一种设计保留在商业药物概况的10%之内。通过使用FDM工艺打印paracetamol的细丝,研究了不同形状对药物释放曲线的影响。他们的结果表明,使用传统方法很难制造复杂的几何形状,但可以更好地控制药物释放。3D印刷和医学生物印刷方面的最新发展在各个领域都具有巨大的潜力。在手术中,3D印刷模型可以帮助外科医生进行计划操作,缩短程序时间和改善结果。也可以快速,经济地创建特定于患者的假肢,使其成为传统解决方案的有吸引力的替代品。Zhao等,Snyder等人和Lode等人等研究人员的工作。已经证明了更准确的疾病模型的潜力,尤其是在癌症研究中。将微流体与3D生物构成整合起来,可以创建复杂的组织结构和共培养物,为功能器官的发展铺平道路。2014; 6(3):035001。 doi:10.1088/1758-5082/6/3/035001。目前,打印整个生物器官仍然是一个遥远的目标。虽然细胞打印可以产生强大的细胞培养,但创建具有必要结构完整性的结构仍然是一个重大挑战。水凝胶矩阵,印刷技术和微流体的整合是通过生物打印来开发功能性人造器官的关键步骤。在不久的将来,3D打印机可能在药房中很普遍,从而实现了个性化的药物输送和制造定制设备。例如,可以通过控制几何形状和精度来实现具有控制药物释放的打印平板电脑。3D印刷在医学中的应用是巨大而变革性的,从创建一次性物体到假肢。随着研发的继续,我们可以期望在个性化药物,器官印刷和手术计划等领域取得令人兴奋的进步。但是,这些技术仍处于早期阶段,需要在广泛采用之前进行进一步的创新和实际考虑。本文讨论了3D打印技术的应用和进步,尤其是在医学领域。作者参考了各种研究和研究论文,探讨了3D印刷在医学中的潜在用途,包括创建假肢,植入物和生物印刷。引用的论文涵盖了一系列主题,从钛植入物的生物相容性到开发用于测试药物毒性的芯片技术。几项研究探讨了3D打印在手术和医学中的使用。生命科学工程学。讨论的其他领域包括三维生物印刷,医学成像和假肢的计算机辅助制造。一些好处包括提高手术计划中的准确性和精度,减少了传统方法上花费的成本和时间,以及改善患者的结果。研究人员还使用3D打印来为具有独特需求的患者创建定制的植入物和假肢。3D印刷在医学中的其他应用包括为训练目的创建实际的器官和组织模型,开发了个性化的神经外科手术计划的大脑模型,以及用诸如压力和温度等内在特性的感觉耳朵假体制造感觉耳朵假体。研究还研究了使用3D打印来生产患者特异性的丙烯酸颅骨成形术,定制的骨盆损伤模板和具有量身定制的机械性能的功能多孔结构。此外,研究人员还探索了用于生物医学应用的陶瓷和金属陶瓷复合材料的创新制造方法。3D打印在手术中的优点包括其创建复杂形状和结构,减少废物和材料消耗的能力,并提高手术计划的准确性和精度。但是,这项技术也存在一些挑战和局限性,例如对专业设备和专业知识的需求以及对灭菌和感染控制的潜在关注。总体而言,3D打印有可能彻底改变手术和医学的各个方面,从术前计划到植入植入物和患者护理。2015; 15(2):177–183。2015; 15(2):177–183。Zhang等人,用于体外Zhang T,Zhang T,Cheng S,Sun W.宫颈肿瘤模型的HeLa细胞三维印刷。Zhang等人,用于细胞设备的微流体歧管制造Snyder J,Son AR,Hamid Q,Sun W.通过精确挤出沉积和含细胞装置的复制模制来制造微流体歧管。制造科学与工程杂志。lode等人,绿色生物打印Lode A,Krujatz F,BrüggemeierS,Quade M,SchützK,Knaack S,Weber J,Bley J,Bley T,Bley T,Gelinsky M. Green Bioprinting:光合作用藻类Laden Hadegae Laden Hydogel scapforts的生物性和医学物质。duan等人,异质主动脉阀Conduits Duan B,Hockaday LA,Kang KH,Butcher JT的3D生物打印。与藻酸盐/明胶水凝胶异质主动脉瓣导管的3D生物打印。生物医学材料研究杂志研究部分A。2013; 101(5):1255–1264。 Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. 生物制造。 2015; 7(4):044102。 ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。 综合生物学。 2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2013; 101(5):1255–1264。Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.生物制造。2015; 7(4):044102。ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。综合生物学。2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2016; 8(4):485–503。受控释放杂志。2016; 234:41–48。2016; 234:41–48。Goyanes等人,3D扫描和印刷,用于个性化药物交付Goyanes A,Det-Amornrat U,Wang J,Basit AW,Gaisford S. 3D Scanning和3D打印作为用于制造个性化局部药物输送系统的创新技术。Khaled等人,桌面3D打印的受控释放制药双层片Khaled SA,Burley JC,Alexander MR,Roberts CJ。桌面3D打印受控释放的药品双层平板电脑。国际药品杂志。2014; 461(1):105–111。 Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。 国际药品杂志。 2015; 494(2):657–663。2014; 461(1):105–111。Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。国际药品杂志。2015; 494(2):657–663。2015; 494(2):657–663。