摘要:由于其独特的光物理和电子特性,Pyrene及其类似物在近几十年来一直是广泛研究的主题。Pyrene及其衍生物形成准分子的倾向已在各个领域发现了广泛的应用。氮取代的pyrene衍生物显示出相似的光物理特性,但对它们而言,迄今为止尚未报道准分子发射。在这里,我们使用时间依赖性密度功能理论(TD-DFT)计算来研究pyrene和2-氮平的二聚体的低洼激子状态。确定准分子平衡结构,并使用糖尿病化程序披露了电荷转移(CT)激发和分子间相互作用的贡献。研究表明,两个分子形成的二聚体具有非常相似的激子状态模式,其中相关的CT贡献控制着准分子态的形成,以及L a / l b态倒置。与pyrene相比,2-余吡林中的偶极 - 偶极相互作用稳定了深色黯淡的准分子结构,并增加了转换为明亮的扭曲准分子的屏障。建议在氮取代的衍生物中的这些差异可能会影响准分子发射特性。
化学激光化学反应以创建激光作用J.C。Polanyi(USSR)提出的1960年首次显示Kasper&Pimentel 1965年首次显示1965与激光腔中混合的气体混合在反应室中化学能源存储良好的能量存储良好反应物是源波长转移:化学反应会产生退出的分子激发态转移到其他激光的材料中几乎所有当前的应用都是军事的因此,用于飞机运载激光的主要类型将能量存储在大型燃油箱中
本文回顾了准分子激光投影光刻技术的早期发展状况。尽管这些技术自 1982 年以来一直处于中等发展速度,但直到今年,它们对未来微加工的特殊力量和重要性才得到广泛认可。2 现在看来,随着进一步发展,这项相对被忽视的新技术可能会在未来十年为微电子行业提供大部分生产能力。具体而言,完全可以预见,正是凭借这项技术,光学技术可以扩展到实现接近 0.25 J.1m 尺寸的生产吞吐量,远远超过去年为 x 射线和粒子束光刻保留的范围。也有可能这项技术将成为终极光学技术,达到基本材料限制最终将要求脱离光学光刻的地步。对未来光刻的需求是强烈的。在撰写本文时,可以使用商用步进重复系统生产 4 Mbit 动态随机存取存储器 (DRAM),无需子场拼接。这项任务已经需要现存最接近完美的宽场成像光学系统,用于任何商业用途。16 Mbit 和 32 Mbit 芯片将需要 - 10 9 个光场像素,是这些系统的两到四倍。正如下面所示,开发合适的紫外 (UV) 准分子投影系统的挑战绝非易事。
摘要。预先指出了基于KRF和XECL准分子激光器的臭氧差异吸收激光雷达(DIAR),用于对流层中的白天和夜间测量。XECL激光用作“ OFF”波长发射极,而KRF激光的辐射在氢化代和氘池中被拉曼移位,以获得277 nm和292 nm“ ON”波长。用于范围0的测量值。5–4。5 km,使用了277 /308 nm,并且在4-10 km范围内使用了292 /308 nm。与弹性反向散射的同时,监测了氮气和水蒸气的XECL激光的拉曼反向散射。氮拉曼信号用于计算气溶胶反向散射和灭绝系数的计算,这些信号与Klett方法的结果与XECL弹性反向散射的结果进行了比较。获得的气溶胶纤维用于校正臭氧浓度。给出了LIDAR应用昼夜和季节性臭氧变化的一些例子。