纯方位估计是目标跟踪中的基本问题之一,也是具有挑战性的问题。与雷达跟踪的情况一样,偏移或位置偏差的存在会加剧纯方位估计的挑战。对各种传感器偏差进行建模并非易事,文献中专门针对纯方位跟踪的研究并不多。本文讨论了纯方位传感器中偏移偏差的建模以及随后的带偏差补偿的多目标跟踪。偏差估计在融合节点处处理,各个传感器以关联测量报告 (AMR) 或纯角度轨迹的形式向该节点报告其本地轨迹。该建模基于多传感器方法,可以有效处理监视区域中随时间变化的目标数量。所提出的算法可得出最大似然偏差估计器。还推导出相应的 Cram´er-Rao 下限,以量化所提出的方法或任何其他算法可以实现的理论精度。最后,给出了不同分布式跟踪场景的模拟结果,以证明所提出方法的能力。为了证明所提出的方法即使在出现误报和漏检的情况下也能发挥作用,还给出了集中式跟踪场景的模拟结果,其中本地传感器发送所有测量值(而不是 AMR 或本地轨道)。
本研究重点是在四体问题的背景下研究利用太阳引力进入月球区域的低能量传输轨迹。具体来说,我们探索了双圆限制四体问题 (BCR4BP) 中的动力学结构。BCR4BP 是一种有用的模型,可用于在地球-月球和太阳-地球系统的复杂动力学都很重要的情况下进行初步轨迹设计。该模型在一个模型中包含了太阳、地球和月球的引力,同时降低了星历表模型中增加的扰动带来的复杂性。我们研究了 BCR4BP 中周期和准周期轨道的存在性和稳定性。庞加莱图表示来自这些轨道的流形结构信息,并允许构建纯弹道低能量传输到月球区域。这项研究的结果表明,利用 BCR4BP 中的动态结构有助于在地月空间中构建复杂的低能量传输。将这三个物体的引力纳入一个模型中,可以在设计过程中提供直观的理解。此外,展示这种设计策略在构建多种类型的地月轨道传输方面的灵活性可能会为未来的设计提供参考。
1 Chollet, F. 使用 Python 进行深度学习,第二版。(Manning Publication Co. LLC,20 Baldwin Road,PO Box 761,Shelter Island,纽约 11964,美国,2021 年)。2 Ray, JS 归纳推理的形式化理论。第二部分。信息与控制,doi:10.1016/s0019-9958(64)90131-7 (1964)。3 Yi, Z. 等人。BrainCog:一种基于脉冲神经网络的脑启发式认知智能引擎,用于脑启发式 AI 和脑模拟。模式,doi:10.1016/j.patter.2023.100789 (2023)。4 Man, Z. 等人。具有快速和慢速思考的语言调节机器人操作。 arXiv(康奈尔大学),doi:10.48550/arxiv.2401.04181 (2024)。5 Luisa, D. 和 Pasquale, S. 人工智能中的探索性合成生物学:相关性标准和生命与认知过程合成模型的分类。《人工智能》,doi:10.1162/artl_a_00411 (2023)。6 Juan Felipe Correa, M. 和 Juan Carlos, M. 从人工智能和贝叶斯统计到神经解剖学:联系、类比和应用。《移民快报》,doi:10.59670/ml.v21is1.6005 (2023)。7 使用 citexs 网站 ( https://www.citexs.com/ ) 进行文献计量分析。 8 Deep Manishkumar, D. 和 Shrikant, M. 增强智能:数字化转型时代的人机协作。国际工程应用科学与技术杂志,doi:10.33564/ijeast.2023.v08i06.003 (2023)。9 Mohamed Ibrahim Beer, M. 和 Mohd Fadzil, H. 使用人工智能驱动的分析引擎实现企业计算中认知机器人过程自动化的自适应安全性。电气工程讲义,doi:10.1007/978-981-16-2183-3_78 (2022)。10 Benjamin, HB 人工智能城市化:治理、程序和平台认知的设计框架。 Ai & Society,doi:10.1007/s00146-020-01121-9 (2021)。11 Gustaf, J.-S.、Prasanna, BLB、Evrim Oya, G. 和 Shengnan, H. 认知机器人流程自动化:概念及其对公共组织动态 IT 能力的影响。IS 进展,doi:10.1007/978-3-030-92644-1_4 (2022)。12 Tononi, G. 和 Edelman,GMJS 意识与复杂性。282,1846-1851 (1998)。
我们通过精确对角化分析了大质量二维量子电动力学 (QED2) 中最轻的 η 0 介子的准部分子分布。哈密顿量和增强算子被映射到具有开放边界条件的空间晶格中的自旋量子比特上。精确对角化中的最低激发态显示为在强耦合下的异常 η 0 态和弱耦合下的非异常重介子之间连续插入,并在临界点处出现尖点。增强的 η 0 态遵循相对论运动学,但在光子极限方面存在较大偏差。在强耦合和弱耦合下,对 η 0 态的空间准部分子分布函数和振幅进行了数值计算,以增加速度,并与精确的光前沿结果进行了比较。增强形式的空间部分子分布的数值结果与在最低 Fock 空间近似中得出的光子部分子分布的逆傅里叶变换相当。我们的分析指出了当前部分子分布的格子程序面临的一些局限性。
18.09.2023 In a paper published today in Nature Communications, researchers from the Paul-Drude-Institut in Berlin, Germany, and the Instituto Balseiro in Bariloche, Argentina, demonstrated that the mixing of confined quantum fluids of light and GHz sound leads to the emergence of an elusive phonoriton quasi-particle – in part a quantum of light (photon), a quantum of sound (声子)和半导体激子。这一发现开辟了一种新颖的方式,可以在光学和微波域之间连贯地转换信息,从而为光子学,光学力学和光学通信技术带来潜在的好处。研究团队的工作从日常现象中汲取灵感:在两个耦合振荡器之间的能量转移,例如,弹簧连接的两个摆(1]。在特定的耦合条件下(称为强耦合(SC)制度),能量连续振荡在两个钟摆之间,因为它们的频率和衰减速率不是未耦合的,它们不再是独立的。振荡器也可以是光子或电子量子状态:在这种情况下,SC制度对于量子状态控制和交换至关重要。在上面的示例中,假定两个摆具有相同的频率,即共振。但是,混合量子系统需要在很大不同频率的振荡器之间连贯的信息传递。在这里,一个重要的例子是在量子计算机网络中。虽然最有前途的量子计算机使用微波炉(即在几个GHz)运行,但使用近红外光子(100 ds THz)有效地传输了量子信息。然后,一个人需要在这些域之间对量子信息的双向传递和相干传递。在许多情况下,微波炉和光子之间的直接转换非常效率低下。在这里,一种替代方法是通过第三个粒子进行介导转换,该粒子可以有效地将微波炉和光子介导。一个好的候选者是晶格的GHz振动(声子)。由Keldysh和Ivanov [2]在1982年奠定了光和声子之间的SC的理论基础,他们预测半导体晶体可以通过另一个准粒子混合光子和声子:exciton-Polariton(exciton-Polariton)(下面:Polariton:Polariton)。极性子从光子和激子之间的强耦合中浮现出来。当声子发挥作用时,它可以将两个极性振荡器与频率恰好与声子的频率不同。如果耦合足够大,即在SC制度中,它会导致
委员会对讨论文件引发的讨论、辩论和思想交流感到高兴,这些讨论是关于该地区在 2050 年及以后应如何发展的。大部分讨论都集中在如何保护和加强大阿德莱德地区备受推崇的特色:我们的优质美食和美酒、我们风景优美的景观和自然环境、我们的文化和建筑遗产、我们世界一流的海滩和整体生活质量;同时提供支持预计增长所需的土地供应。
Don Cossens,Buangor 邮政局长。Mike Edgecombe,阿德莱德 Kinhill 工程师。Doug Hayes,阿德莱德城市规划部。Carlotta Kellaway,墨尔本规划和环境部历史学家。Brian I-angelduddecke,澳大利亚有轨电车和公共汽车员工协会主席。Peter Mclennan 和 David Cowan,阿德莱德 Woodhead Australia Architects。Paul Flattery、Bill Fudali、Steve Hooper、Robin Mclmber 和 Greg Martin,州交通局,S.A” Claud Notman 和 Skipton 历史学会成员,Vic。Rt。Hon。William Rodgers,RIBA 总干事。Anne Riddle,阿德莱德大学研究助理。Robert Sands,建筑师,墨尔本。墨尔本大都会交通局的 Phil Smithers 和 Patrick Wilson。Christopher Steele,作家和制图师,Gawler。Hans Zimmerman,'Woods Bagot Architects,阿德莱德。
在接下来的30年中,国家规划委员会(委员会)的目标是采取更再生的长期计划方法,该方法促进了一种更绿色,更强大,更公平的生活方式。我们希望鼓励人们通过将住房,工作和服务更加紧密地找到本地生活,以便人们可以在舒适的散步,乘车或公共交通工具中满足大部分日常需求。
● 指导工人活动,例如种植、施用化学品、收割、工资发放和记录保存。 ● 协调与工程、设备维护和其他相关部门的种植活动。 ● 分析和评估环境条件以确定天气和气候对水稻生产的影响。 ● 评估财务报表和预算提案。 ● 检查设备以确保正常运转。 尼日利亚农产品公司的成就。 ● 通过适当的维护监控和设备处理,降低了 20% 的采购成本。 ● 制定营销计划,在 2018 年第一季度将利润率提高 15%。 ● 通过保持适当的收获计划,实现了整体作物产量提高的里程碑。