个性化的基于剂量的治疗计划需要准确且可重复的非侵入性测量,以确保安全性和有效性。使用SPECT估算剂量是可能的,但对于α(A) - 粒子 - 由于复杂的G-发射光谱,极低的计数以及各种跨扫描仪 - 扫描仪 - 少量的杂物构造而进行的,发射放射性药物治疗(A -RPT)。Through the incorporation of physics-based considerations and skipping of the potentially lossy voxel-based recon- struction step, a recently developed projection-domain low-count quantitative SPECT (LC-QSPECT) method has the potential to provide reproducible, accurate, and precise activity concentration and dose measures across multiple scanners, as is typically the case in multicen- ter settings.为了评估这一潜力,我们进行了一项硅成像试验,以评估基于223 RA的A-RPT的LC-QSPEPT方法,该试验概括了患者和成像系统的变异性。方法:一项虚拟成像试验,名为《硅成像试验》中的量化精度(ISIT-QA)的虚拟成像试验的设计旨在评估在多个扫描仪中LC-Qspect方法的性能的目的,并将其与基于常规的重建量化量化方法进行比较。在这项试验中,我们模拟了280例现实的虚拟虚拟患者患有骨 - - 抑制前的前列腺癌,并用基于223 RA的A-RPT治疗。该试验是使用9个模拟SPECT扫描仪 - 准直仪配置进行的。最后,在测试 - 重测研究中评估了该方法的可重复性。该试验的主要目的是通过计算LC-QSPECT来评估多个扫描仪 - 准直仪配置的剂量估计值的可重复性,通过计算类内相关系数。此外,我们比较了可重复性,并评估了两种考虑的量化方法在多个扫描仪 - 准直仪配置方面的准确性。结果:在这项试验中,使用268 223 RACL 2治疗的虚拟前列腺癌患者(共2,903个病变)评估LC-QSPECT。lc-qspect提供了9个扫描仪 - 准直仪配置的剂量估计值(类内相关系数。0.75)和高精度(恢复系数的集合平均值范围为1.00至1.02)。与常规重建 -
本研究评估了使用专为脑 SPECT 设计的第二代多针孔 (MPH) 准直器在多巴胺转运蛋白 (DAT) SPECT 中减少扫描持续时间的可能性,与平行孔和扇形束准直器相比,该准直器具有更高的计数灵敏度和空间分辨率。方法:这项回顾性研究包括 640 例连续的临床 DAT SPECT 研究,这些研究均以列表模式使用配备 MPH 准直器的三头 SPECT 系统获取,在注射 181 6 10 MBq [ 123 I]FP-CIT 后净扫描持续时间为 30 分钟。通过将事件限制在每个投影角度的列表模式数据的按比例减少的时间间隔内,获得对应于扫描持续时间为 20、15、12、8、6 和 4 分钟的原始数据。无论扫描持续时间如何,都使用相同的参数设置迭代重建 SPECT 图像。通过视觉评估、常规特异性结合率分析和在 30 分钟扫描上训练的深度卷积神经网络,对得到的 5,120 张 SPECT 图像进行评估,以确定纹状体信号是否存在神经退行性典型的减少。结果:关于视觉解释,在 12 分钟的扫描持续时间内,图像质量对于所有 640 名患者都被认为具有诊断意义。30 到 12 分钟之间视觉解释不一致的比例(1.2%)不大于同一读者在 30 分钟扫描持续时间内两次阅读之间视觉解释不一致的比例(1.5%)。在 10 分钟的扫描持续时间内,对于 5% 的重测变异性,30 分钟图像的壳核特异性结合率的一致性好于预期。在 6 分钟或更短的扫描持续时间内观察到基于卷积神经网络的自动分类的相应变化。结论:采用配备 MPH 准直器的三头 SPECT 系统,在施用约 180 MBq 的 [ 123 I]FP-CIT 并持续 12 分钟后,可实现可靠的 DAT SPECT。
响应于2013年欧洲粒子物理战略的建议,这是对所谓的高能LHC(HE-LHC)CERN进行能源升级的概念设计工作,作为未来圆形围栏研究的一部分。HE-LHC机器(旨在在现有的LHC隧道中使用16吨磁铁技术)将在27 TEV(〜2×LHC)的质子碰撞中提供质子碰撞,总储存的能量为1.34 gJ(〜4×LHC)。通过调整LHC准直探针,构思了He-LHC的Betatron清洁插入的第一个布局,需要维持至少10秒钟的次数,即约1.86兆瓦的影响,对应于12分钟的光束寿命,而无需诱导任何磁铁淬火或对其他加速度造成任何损坏。在本文中,我们通过粒子跟踪和相互作用计算评估了HE-LHC机器在HE-LHC机器中质子束操作的准直插入的功率沉积。通过三步模拟方法评估了对温暖元件以及超导分散抑制磁体的束损失影响。尤其是对于未来提议的高能LHC,我们证明了在分散抑制器中添加局部准直仪的必要性,并且我们发现了准直插入中梁线“ Dogleg”的有害后果。
利用三维动力学模拟,我们研究了具有预填充圆柱形通道的结构化激光辐照目标发射的准直 γ 射线束及其随激光功率(在多 PW 范围内)的变化。通过增加激光能量和焦斑大小来增加激光功率,同时保持峰值强度固定在 5 × 10 22 W / cm 2 。通道半径按比例增加以适应激光斑大小的变化。将激光能量转换为 MeV 级 γ 射线束(具有 10 ◦ 的开角)的效率随着入射激光功率 P 的增加而迅速增加,然后在 P ≈ 4 PW 以上达到饱和。详细的粒子跟踪显示,功率缩放是较高激光功率下电子加速增强的结果。直接受益于这种强大缩放的一项应用是通过双光子碰撞产生对。我们研究了通过线性 Breit-Wheeler 过程生成对的两种方案:两束 γ 射线碰撞和一束 γ 射线与黑体辐射碰撞。对于 P = 4 PW 产生的 γ 射线,这两种方案分别投射出多达 10 4 和 10 5 对。与激光照射空心通道的情况进行比较,证实了预填充通道装置的稳健性。
抓捕行动是从反恐 (CT) 行动中获取有意义情报以及缓解和瓦解恐怖主义威胁的最佳机会。因此,美国在政策上优先考虑抓捕恐怖主义嫌疑人,将其作为致命行动的首选方案,因此要求将抓捕方案的可行性评估作为致命行动提案的一部分。只有在无法抓捕个人且没有其他合理替代方案有效应对威胁时,才应采取致命行动以防止针对美国人的恐怖主义袭击。不应将致命行动作为惩罚措施或替代在民事法庭或军事委员会起诉恐怖主义嫌疑人的方式提出或实施。即使在当时既没有起诉也没有第三国拘留可供选择的情况下,抓捕也是首选方案。
抓捕行动是从反恐 (CT) 行动中获取有意义情报以及缓解和瓦解恐怖主义威胁的最佳机会。因此,美国在政策上优先考虑抓捕恐怖主义嫌疑人,将其作为致命行动的首选方案,因此要求将抓捕方案的可行性评估作为致命行动提案的一部分。只有在无法抓捕个人且没有其他合理替代方案有效应对威胁时,才应采取致命行动以防止针对美国人的恐怖主义袭击。不应将致命行动作为惩罚措施或替代在民事法庭或军事委员会起诉恐怖主义嫌疑人的方式提出或实施。即使在当时既没有起诉也没有第三国拘留可供选择的情况下,抓捕也是首选方案。
前几天晚上,我和妻子 Sita 就她测量客厅长度的方法的准确性发生了激烈的争论。她不想下楼去找卷尺,于是在地上躺了四次,用猫玩具标记她的脚/头落在地板上的位置。考虑到各种变量,她的方法不准确,她无视我的抗议:她身高 5 英尺半英寸,猫玩具宽约 2 英寸。好吧,在我拿到卷尺后,结果发现她测量的 20 英尺只差了一英寸半——误差率为 0.625%±。我完全赞成跳出思维定势,利用手头上的一切来回答一个棘手的问题,但说到测量,我无法摆脱计量学家的思维定势……她的方法让我很不舒服,让我怒不可遏。但是,为了世界和平,我不得不对她的成果表示赞赏。我在这个行业工作了 15 年,我知道如果我们增加 ±1 Sita 的分辨率贡献者,我们就能看出我对她的方法有多么不确定。但我确实喜欢计量学,因为它影响一切;我可以将我作为计量学家的职业生涯与几乎所有职业联系起来。多样性令人惊叹……只需看看我们在本期中的论文即可。大多数人将 X 射线与一两根骨折联系在一起,但很少有人知道使用另一种需要计量的技术来窥视皮肤下方需要什么。在本期中,我们介绍了“学习将计量原理应用于 500 eV 至 110 keV 能量范围内的 X 射线强度测量”,这是一篇由 National Security Technologies LLC 撰写的论文。加利福尼亚州费尔菲尔德的 Bryza 风实验室总裁 Rachael Coquilla 撰写了她关于“空气速度校准质量”的文章,重点介绍了风洞是否符合风传感器校准测试的要求。只需一点风洞计量就能影响从建筑物到喷气式飞机等所有事物的设计和工程。在本期《计量学入门》文章中,Ohm-Labs 的 Jay Klevens 就“校准直流分流器:技术和不确定性”贡献了自己的专业知识。这篇文章对于计量学入门来说可能有点高级,但电流分流器校准并不简单。随着当今行业的发展以及向 17025 和 z540.3 的推进,了解造成不确定性的因素对于我们的测量至关重要。我希望能在加利福尼亚州萨克拉门托的 NCSLI 大会(展位 623)或在阿纳海姆的 AUTOTESTCON 楼上见到大家,所以请务必前来并告诉我们我们的进展以及您希望在杂志中看到什么。
本报告旨在提供基本信息并陈述在传统临床环境中实施多叶准直器 (MLC) 使用所需的基本概念。所有主要治疗加速器制造商均提供 MLC。使用 MLC 取代传统场成形技术本身并不能改善恶性肿瘤的局部控制。在传统放射肿瘤学中使用 MLC 的理由是提高治疗效率。因此,本报告旨在协助医学物理学家、剂量师和放射肿瘤学家获取、测试、调试、日常使用和质量保证 (QA) MLC,以提高治疗设施的利用效率。本报告的目的并非描述 MLC 在适形治疗或动态治疗中的高级应用研究。放射治疗效果的主要限制因素是特定放射治疗技术固有的健康组织受照射会产生不良并发症。许多器官对辐射损伤相对敏感(脊髓、唾液腺、肺和眼睛是常见的例子),在放射治疗计划期间必须给予特别考虑。一般而言,治疗计划人员试图优化给定治疗策略可实现的剂量分布,以将肿瘤杀伤剂量的辐射输送到目标体积,同时最大限度地减少健康组织吸收的辐射量。治疗机的准直器钳口产生矩形光束。1973 年)。需要对光束进行明确的场整形,以减少受辐射的健康组织量,并使用多束光束来降低目标体积外组织吸收的剂量。传统治疗策略使用有限数量的整形光束,并将光束的方向限制在共面场。传统治疗机通过内置在机器中的一组致密金属准直器(此处将使用术语“钳口”)来整形 x 射线场。这些准直器由治疗师使用治疗室中的手动控制器定位,通常在治疗期间保持静止。传统光束整形是通过使用这些准直器钳口和连接到准直器钳口之外的加速器的二次定制光束块的组合来实现的。传统的阻滞块由一组具有各种形状和尺寸的铅块组成,这些铅块在每次治疗时手工放置,或者由为特定患者应用的特定场单独制作的 cerrobend 块组成(Powers 等人。光束穿过这些铅合金屏蔽,这些屏蔽阻挡了目标体积之外的矩形辐射场部分。光束阻滞块是根据患者的治疗计划,使用射线平面胶片或 CT 扫描数据制作的。单个患者在治疗期间可能使用多达 10 个辐射场,每个辐射场都有不同的形状,需要独特的光束阻滞。