实现强大而实时的3D感知是自动驾驶汽车的基础。虽然大多数现有的3D感知方法优先考虑检测准确性,但十个忽略了关键方面,例如计算效率,板载芯片部署友好性,对传感器安装偏差的韧性以及对各种VE-HILE类型的适应性。为了应对这些挑战,我们提出了nvautonet:一种专业的鸟类视图(BEV)感知网络 - 针对自动化车辆的明确量身定制。nvautonet将同步的相机图像作为输入,并预测3D信号(例如障碍物,自由空间和停车位)。NVAUTONET架构(图像和Bev Back-bones)的核心依赖于有效的卷积网络,该网络使用Tensorrt优化了高性能。我们的图像到BEV转换采用简单的线性层和BEV查找表,从而确保了快速推理速度。Nvautonet在广泛的专有数据集中受过培训,在NVIDIA DRIVE ORIN SOC上以每秒53帧的速度运行,始终达到升高的感知精度。值得注意的是,Nvautonet表现出对不同汽车模型产生的偏差偏差的韧性。此外,Nvautonet在适应各种车辆类型方面表现出色,这是通过廉价模型的微调程序来促进的,可以加快兼容性调整。
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
b')lqdoo \\ wkdqnvwrduwl \ xe2 \ x80 \ xb9fldolq whooljhqfhqfhdqglpdjhdqdo \ \ \ \ \ vlvwrrovduhhhrovduhhhhhqjwwrrovduhhqjlqjwkdwkdwzloohqdepr ymorecly inters inters inters inters inters suste suste suste生物学做出更准确的诊断。这些众多发展的主要后果之一是将癌症病理分裂为vhulhvriuduhvshfl \ xe2 \ x80 \ xb9fglvhdvhvhvzklfkxqghuslqghuslqvwkhghghghghyhorsphqwriwdujhdujhgwkhudslhv7klvshuvssurdol] phglflqhsurpswvxvwruh \ xef \ xac \ x81hfwsduwlfxoduo \\ rqkrzrzwrfrqgxfwfwfolqlfdowuldowuldovov'
所有专家都说,当前的脊柱或硬膜外麻醉程序是在脊柱地标触及椎间盘上。两个指出,可以使用常规超声波,但这不是很常见,因为需要专业技能。两位专家说,该设备具有创新性,因为它可以通过在超声图像上叠加的椎骨图像来轻松找到椎间盘空间。也有人指出,使用该设备需要最少的训练,并且它是手持式设备,因此很容易在床边使用。一位专家说,该设备可以在产妇护理中帮助超声引导的脊柱或硬膜外块,因为它比较大的机器更容易使用,并且在给予脊柱块时遇到困难时。四位专家认为,除标准护理外,还可以使用该设备。一个人认为它可以随着时间的流逝而取代当前的标准护理。
从时间分辨的医学图像中精确重建右心几何形状和运动可增强基于图像可视化的诊断工具以及通过计算方法进行的心脏血液动力学分析。由于右心形态和运动的特殊性,常用的分割和/或重建技术仅采用短轴电影 MRI,在右心相关区域(如心室底部和流出道)缺乏准确性。此外,重建过程非常耗时,并且在生成计算域的情况下需要大量的人工干预。本文提出了一种从时间分辨 MRI 中精确高效地重建右心几何形状和运动的新方法。具体而言,所提出的方法利用表面变形来合并来自多系列电影 MRI(如短/长轴和 2/3/4 腔采集)的信息并重建重要的心脏特征。它还通过利用合适的图像配准技术自动提供完整的心脏收缩和放松运动。该方法既适用于健康病例,也适用于病理(法洛四联症)病例,并且比标准程序产生更准确的结果。所提出的方法还用于为计算流体动力学提供重要输入。相应的数值结果证明了我们的方法在计算临床相关血液动力学量方面的可靠性。© 2023 Elsevier BV 保留所有权利。
2019 年 6 月 23 日至 2020 年 3 月 22 日,在 Wah Cantt 第三医院接受脑膜炎检查。材料和方法:通过非概率目的抽样,共纳入 173 名患者。我们的研究纳入了年龄在 2 至 70 岁之间、性别不限且根据临床表现疑似患有脑膜炎的患者。本研究排除了禁用增强 MRI 和腰椎穿刺的患者、确诊为脑膜炎的患者和不同意接受检查的患者。所有患者均以 0.2 毫升/秒的速度接受静脉注射造影剂钆。钆后 T1W 和钆后 FLAIR 图像由顾问放射科医生获取和评估。将发现记录在规定的表格上。对患者进行随访并从实验室收集腰椎穿刺结果。结果:平均年龄为 26.4±23.5 岁,范围从 2 岁至 70 岁。 173 名患者中,98 名(56.6%)为男性,75 名(43.4%)为女性。临床表现如下:喂养不良、易怒和嗜睡 86 人(49.7%),头痛 137 人(79.2%),恶心/呕吐 125 人(72.3%),颈部僵硬 89 人(51.4%),意识水平改变 132 人(76.3%),癫痫发作 78 人(45.1%)和局部神经功能障碍 45 人(26%)。以腰椎穿刺金标准为诊断标准,增强 MRI FLAIR 诊断脑膜炎的灵敏度为 91%,特异性为 85%,PPV 为 87.6%,NPV 为 89.4%,诊断准确率为 88.4%。以腰椎穿刺金标准为标准,增强 MRI T1W 在脑膜炎诊断中的诊断准确率显示敏感性 60.2%、特异性 77.5%、PPV 75.6%、NPV 62.6% 和诊断准确率 68.2%。结论:与增强 T1W 序列相比,增强 FLAIR 序列在检测脑膜增强方面具有更高的敏感性和特异性。因此,对于所有怀疑患有脑膜炎的患者,应将增强 FLAIR 序列作为常规序列添加到 MRI 脑部方案中。
mung豆种子在农业生产和食品加工中非常重要,但是由于它们的多样性和相似的外观,传统的分类方法都具有挑战性,以解决这一问题,这项研究提出了一种基于学习的方法。在这项研究中,基于深度学习模型MobilenetV2,提出了DMS块,并通过引入ECA块和Mish激活函数,即提出了高度优势网络模型,即HPMobileNet,提出,该模型被提出,该模型是在eLBIND中探索的,可用于分类和精确的图像识别。在这项研究中,收集了八种不同的绿豆种子,并通过阈值分割和图像增强技术获得了总共34,890张图像。hpmobilenet被用作主要网络模型,并通过在大规模的绿豆种子图像数据集上进行训练和精细调整,实现了有效的特征提取分类和识别能力。实验结果表明,HPMobileNet在Mung Bean Seed Grain Grain分类任务中表现出色,其准确性从87.40%提高到测试集的94.01%,并且与其他经典网络模型相比,结果表明,HPMobileNet可以达到最佳结果。此外,本研究还分析了学习率动态调整策略对模型的影响,并探讨了将来进一步优化和应用的潜力。因此,这项研究为开发绿豆种子分类和智能农业技术提供了有用的参考和经验基础。
生成模型的最新进展引起了人们对统计差异作为模型比较手段的研究兴趣。常用的评估方法,例如 Fréchet 初始距离 (FID),与样本的感知质量有很好的相关性,并且对模式下降很敏感。然而,这些指标无法区分不同的失败案例,因为它们只产生一维分数。我们提出了一种新的分布精度和召回率定义,将差异分解为两个独立的维度。所提出的概念直观,保留了理想的属性,并自然而然地产生了一种可用于评估生成模型的有效算法。我们将这个概念与总变异以及最近的评估指标(如初始分数和 FID)联系起来。为了证明所提出方法的实用性,我们对生成对抗网络和变分自动编码器的几种变体进行了实证研究。在大量实验中,我们表明所提出的指标能够将生成样本的质量与目标分布的覆盖范围区分开来。
•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
背景:使用文本报告向父母和对赔偿权提出异议的法律专业人士传达患有长期缺氧缺血性损伤 (HII) 的儿童的双侧、对称性和区域性皮质脑萎缩可能很困难。使用标准的横截面图像向外行人解释双侧、区域性脑成像也具有挑战性。大脑表面的单一平面图像,就像从地球仪中得出地球地图一样,可以通过磁共振成像 (MRI) 扫描的曲面重建生成,即墨卡托地图。外行人在未经事先培训的情况下识别异常“墨卡托脑图”的能力需要在非医疗环境中使用前进行评估。目的:确定外行人在未经事先培训的情况下检测异常儿童墨卡托平面脑图的灵敏度和特异性。方法和材料:向 111 名参与者分别提供 10 张墨卡托脑图。这些地图包括 5 个 HII、1 个皮质发育不良和 4 个正常病例。参与者需要识别异常扫描。计算了总体和参与者亚组的敏感性和特异性。结果:总体敏感性和特异性分别为 67% 和 80%。普通放射科医生(n = 12)的敏感性和特异性分别为 91.2% 和 94.6%。外行人(n = 54)的敏感性为 67%,特异性为 80%。结论:放射科医生的高特异性和敏感性验证了该技术在区分皮质病理异常扫描方面的有效性。外行人使用墨卡托地图识别异常大脑的高特异性表明,这是一种向外行人展示儿童 HII 皮质 MRI 异常的可行沟通工具。