准确的信息处理在技术和自然界中都是至关重要的。为了实现它,任何信息处理系统都需要初始资源供应远离热平衡。在这里,我们建立了可以通过给定数量的非平衡资源来实现准确性的基本限制。该限制适用于任意信息处理任务和任意信息处理系统受量子力学定律的影响。它很容易计算,并且用熵数量表示,我们将其命名为反向熵,与所考虑的信息处理任务的时间逆转相关。对于所有确定性的经典计算及其所有量子延伸都可以达到极限。作为一种应用程序,我们建立了非quilibrium和准确性之间的最佳权衡,用于存储,传输,克隆和擦除信息的基本任务。我们的结果设定了接近最终效率限制的新设备设计的目标,并提供了一个框架,以证明量子设备的热力学优势比其经典配料。
mung豆种子在农业生产和食品加工中非常重要,但是由于它们的多样性和相似的外观,传统的分类方法都具有挑战性,以解决这一问题,这项研究提出了一种基于学习的方法。在这项研究中,基于深度学习模型MobilenetV2,提出了DMS块,并通过引入ECA块和Mish激活函数,即提出了高度优势网络模型,即HPMobileNet,提出,该模型被提出,该模型是在eLBIND中探索的,可用于分类和精确的图像识别。在这项研究中,收集了八种不同的绿豆种子,并通过阈值分割和图像增强技术获得了总共34,890张图像。hpmobilenet被用作主要网络模型,并通过在大规模的绿豆种子图像数据集上进行训练和精细调整,实现了有效的特征提取分类和识别能力。实验结果表明,HPMobileNet在Mung Bean Seed Grain Grain分类任务中表现出色,其准确性从87.40%提高到测试集的94.01%,并且与其他经典网络模型相比,结果表明,HPMobileNet可以达到最佳结果。此外,本研究还分析了学习率动态调整策略对模型的影响,并探讨了将来进一步优化和应用的潜力。因此,这项研究为开发绿豆种子分类和智能农业技术提供了有用的参考和经验基础。
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
摘要该项目提出了三种用于为EEG Net数据集创建神经网络模型的方法 - 使用CNN,CNN+LSTM和变异自动编码器(VAE)。研究评估并比较了两种方法在分类运动图像中的性能。结果表明,CNN+LSTM方法在准确性方面优于VAE方法。但是,VAE方法具有保留脑电图信号的关键特征的优势,同时降低其尺寸。两种方法都有其各自的优势和局限性,可以根据应用程序的特定要求使用。除了上述两种方法外,我们还为该数据集实施了随机森林,以对ML和DL模型的准确性成就进行比较分析。索引术语:机器学习(ML),深度学习(DL),VAE(变异自动编码器),长期短期存储网络(LSTM),脑电图(EEG)(EEG)
b')lqdoo \\ wkdqnvwrduwl \ xe2 \ x80 \ xb9fldolq whooljhqfhqfhdqglpdjhdqdo \ \ \ \ \ vlvwrrovduhhhrovduhhhhhqjwwrrovduhhqjlqjwkdwkdwzloohqdepr ymorecly inters inters inters inters inters suste suste suste生物学做出更准确的诊断。这些众多发展的主要后果之一是将癌症病理分裂为vhulhvriuduhvshfl \ xe2 \ x80 \ xb9fglvhdvhvhvzklfkxqghuslqghuslqvwkhghghghghyhorsphqwriwdujhdujhgwkhudslhv7klvshuvssurdol] phglflqhsurpswvxvwruh \ xef \ xac \ x81hfwsduwlfxoduo \\ rqkrzrzwrfrqgxfwfwfolqlfdowuldowuldovov'
实现强大而实时的3D感知是自动驾驶汽车的基础。虽然大多数现有的3D感知方法优先考虑检测准确性,但十个忽略了关键方面,例如计算效率,板载芯片部署友好性,对传感器安装偏差的韧性以及对各种VE-HILE类型的适应性。为了应对这些挑战,我们提出了nvautonet:一种专业的鸟类视图(BEV)感知网络 - 针对自动化车辆的明确量身定制。nvautonet将同步的相机图像作为输入,并预测3D信号(例如障碍物,自由空间和停车位)。NVAUTONET架构(图像和Bev Back-bones)的核心依赖于有效的卷积网络,该网络使用Tensorrt优化了高性能。我们的图像到BEV转换采用简单的线性层和BEV查找表,从而确保了快速推理速度。Nvautonet在广泛的专有数据集中受过培训,在NVIDIA DRIVE ORIN SOC上以每秒53帧的速度运行,始终达到升高的感知精度。值得注意的是,Nvautonet表现出对不同汽车模型产生的偏差偏差的韧性。此外,Nvautonet在适应各种车辆类型方面表现出色,这是通过廉价模型的微调程序来促进的,可以加快兼容性调整。
•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
该研究的目的是通过对基台适应程度的体外研究来评估可移动部分义齿中数字印象的精度。肯尼迪III类模型,在43和47元素之间具有假肢空间,分别在米西奥 - 胶囊和扣带区域中具有壁ni。在亚组浓度和conm中进行了常规印象,而数字扫描是在DIGC和DIGM中进行的。使用石膏和树脂型号上的蜡技术制造了简化的钴 - 铬合金框架。通过用冷凝硅硅硅酮打动壁ni,定性评估穿孔,并在横截面后立体显微镜下定量测量霉菌厚度来评估结构的适应程度。常规适应性在实验组中更为普遍。conce显示出较高的平均基台适应程度,而conm的平均值较低。研究因素,印象技术和基台座椅的类型在统计学上没有显着意义,并且变量之间没有相互作用。咬合和扣带式基台测量点没有统计学上的显着差异。数字扫描在基台适应方面产生了更好的结果,基台座椅和金属结构之间的平均间隙较小,因此在临床上可以接受。基座座和印象技术的类型对基台适应没有统计学上的显着影响。印象技术并不代表影响不同测量点上咬合和扣带扣基台适应的因素。
从时间分辨的医学图像中精确重建右心几何形状和运动可增强基于图像可视化的诊断工具以及通过计算方法进行的心脏血液动力学分析。由于右心形态和运动的特殊性,常用的分割和/或重建技术仅采用短轴电影 MRI,在右心相关区域(如心室底部和流出道)缺乏准确性。此外,重建过程非常耗时,并且在生成计算域的情况下需要大量的人工干预。本文提出了一种从时间分辨 MRI 中精确高效地重建右心几何形状和运动的新方法。具体而言,所提出的方法利用表面变形来合并来自多系列电影 MRI(如短/长轴和 2/3/4 腔采集)的信息并重建重要的心脏特征。它还通过利用合适的图像配准技术自动提供完整的心脏收缩和放松运动。该方法既适用于健康病例,也适用于病理(法洛四联症)病例,并且比标准程序产生更准确的结果。所提出的方法还用于为计算流体动力学提供重要输入。相应的数值结果证明了我们的方法在计算临床相关血液动力学量方面的可靠性。© 2023 Elsevier BV 保留所有权利。
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会
