b')lqdoo \\ wkdqnvwrduwl \ xe2 \ x80 \ xb9fldolq whooljhqfhqfhdqglpdjhdqdo \ \ \ \ \ vlvwrrovduhhhrovduhhhhhqjwwrrovduhhqjlqjwkdwkdwzloohqdepr ymorecly inters inters inters inters inters suste suste suste生物学做出更准确的诊断。这些众多发展的主要后果之一是将癌症病理分裂为vhulhvriuduhvshfl \ xe2 \ x80 \ xb9fglvhdvhvhvzklfkxqghuslqghuslqvwkhghghghghyhorsphqwriwdujhdujhgwkhudslhv7klvshuvssurdol] phglflqhsurpswvxvwruh \ xef \ xac \ x81hfwsduwlfxoduo \\ rqkrzrzwrfrqgxfwfwfolqlfdowuldowuldovov'
在电子游戏中,调整战斗难度可能是一项艰巨的任务。当我们谈论多个 AI 代理同时向玩家射击的场景时,情况尤其如此。在这种情况下,可能会出现意外的伤害峰值,这会使难度平衡变得更加困难。本章将展示如何在不损害玩家体验的情况下避免它们,同时仍为设计师提供许多平衡功能。有几种不同的方法来解决这个问题。我们可以调整 AI 武器造成的伤害;我们可以添加一些启发式方法,根据诸如玩家上次被击中后经过的时间或同时瞄准玩家的 AI 数量等因素动态修改伤害值;或者我们可以让 AI 不那么准确,每隔几次射击才真正击中玩家一次。后者将是本章的重点:利用 AI 的准确性来更好地控制玩家每帧可以受到的伤害量。这是一个复杂而有趣的话题,主要有两个部分:
•Barodiya,V。K.(2022)。使用机器学习对疾病诊断的研究。本文在医学诊断任务中评估了各种ML模型的性能,包括SVM和深度学习。该研究还探讨了数据预处理技术以提高模型的准确性。与项目的相关性:研究结果与该项目的重点放在利用SVM和强大的预处理技术上,以检测具有高精度的复杂疾病。•Luo,X.,Wang,Y。,&Lee,L。(2021)。基于机器学习的诊断系统的开发和五项评估。本文提供了一个全面的框架,用于使用精度,回忆和F1得分等指标评估机器学习模型。与该项目的相关性:研究中讨论的评估指标直接适用于评估提出的系统的性能,从而确保诊断预测的准确性和可靠性。
mung豆种子在农业生产和食品加工中非常重要,但是由于它们的多样性和相似的外观,传统的分类方法都具有挑战性,以解决这一问题,这项研究提出了一种基于学习的方法。在这项研究中,基于深度学习模型MobilenetV2,提出了DMS块,并通过引入ECA块和Mish激活函数,即提出了高度优势网络模型,即HPMobileNet,提出,该模型被提出,该模型是在eLBIND中探索的,可用于分类和精确的图像识别。在这项研究中,收集了八种不同的绿豆种子,并通过阈值分割和图像增强技术获得了总共34,890张图像。hpmobilenet被用作主要网络模型,并通过在大规模的绿豆种子图像数据集上进行训练和精细调整,实现了有效的特征提取分类和识别能力。实验结果表明,HPMobileNet在Mung Bean Seed Grain Grain分类任务中表现出色,其准确性从87.40%提高到测试集的94.01%,并且与其他经典网络模型相比,结果表明,HPMobileNet可以达到最佳结果。此外,本研究还分析了学习率动态调整策略对模型的影响,并探讨了将来进一步优化和应用的潜力。因此,这项研究为开发绿豆种子分类和智能农业技术提供了有用的参考和经验基础。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会
背景:使用文本报告向父母和对赔偿权提出异议的法律专业人士传达患有长期缺氧缺血性损伤 (HII) 的儿童的双侧、对称性和区域性皮质脑萎缩可能很困难。使用标准的横截面图像向外行人解释双侧、区域性脑成像也具有挑战性。大脑表面的单一平面图像,就像从地球仪中得出地球地图一样,可以通过磁共振成像 (MRI) 扫描的曲面重建生成,即墨卡托地图。外行人在未经事先培训的情况下识别异常“墨卡托脑图”的能力需要在非医疗环境中使用前进行评估。目的:确定外行人在未经事先培训的情况下检测异常儿童墨卡托平面脑图的灵敏度和特异性。方法和材料:向 111 名参与者分别提供 10 张墨卡托脑图。这些地图包括 5 个 HII、1 个皮质发育不良和 4 个正常病例。参与者需要识别异常扫描。计算了总体和参与者亚组的敏感性和特异性。结果:总体敏感性和特异性分别为 67% 和 80%。普通放射科医生(n = 12)的敏感性和特异性分别为 91.2% 和 94.6%。外行人(n = 54)的敏感性为 67%,特异性为 80%。结论:放射科医生的高特异性和敏感性验证了该技术在区分皮质病理异常扫描方面的有效性。外行人使用墨卡托地图识别异常大脑的高特异性表明,这是一种向外行人展示儿童 HII 皮质 MRI 异常的可行沟通工具。
博茨瓦纳 - 哈佛健康合作伙伴关系,Gaborone,Botswana(T Mbangiwa PhD,K Lechiile MSC,T Leeme MBBS,N Youssouf PhD,D S Lawrence MBCHB,M Mosepele,M Mosepele,M Mosepele MD,J n jarvis MRCP PhD);巴黎大学的巴斯德研究所,帕里斯特大学,转化真菌学小组,国家deRéférencemycoses mycoses ivasives et Antifongiques,法国巴黎真菌学系(T Mbangiwa,Sturny-LeclèreMSC,T Boyer-Chammard Md,boyer-Chammard Md,ofoer-chammard Md,of o o o lortholary md phd phd phd phd phd phd,prap pr a a a alanio a a alanio pr。南非开普敦大学卫生科学系病理学系传染病与分子医学研究所(T Mbangiwa,J C Hoving Phd,H Mwandumba博士);马拉维 - 韦尔康信托基金会临床研究计划,卡缪祖健康科学大学,马拉维布兰蒂尔(C Kajanga MSC,M Moyo MBBS);法国Ajaccio的中心D'Ajaccio中心传染病和热带医学系(T Boyer-Chammard);南非传染病与分子医学研究所(IDM)的非洲CMM医学真菌学研究部门,南非开普敦(J C Hoving);英国伦敦卫生与热带医学学院传染和热带疾病学院临床研究系,英国伦敦(N Youssouf,D S Lawrence,J N Jarvis教授);利物浦热带医学学校,英国利物浦(H Mwandumba);
Michele Martinazzo,Davide Magurno,William Cossich,Carmine Serio,Guido Masiello,Tiziano Maestri,评估远红外和中红外波长的缩放方法的准确性,定量光谱和辐射转移杂志,杂志
研究人员使用高分辨率MERRA-2数据以及统计方法来评估耦合模型对比度项目(CMIP5和CMIP6)的性能,以模拟降水,最高温度(TMAX)和最低温度(TMIN)。他们应用了双线性插值将数据集标准化为0.25°×0.25°的分辨率。对于未来的气候预测,除了CMIP5方案外,它们还融合了CMIP6场景。根据Panj River Basin的独特地形特征的适用性选择了总共八个通用循环模型。