摘要 — 合成数据增强对于机器学习分类至关重要,特别是对于生物数据,因为生物数据往往是高维且稀缺的。机器人控制和增强在残疾人和健全人中的应用仍然主要依赖于针对特定对象的分析。这些分析很少能推广到整个人群,而且似乎使简单的动作识别(例如机器人假肢和操纵器的抓握和释放)过于复杂。我们首次展示了多个 GPT-2 模型可以机器生成合成生物信号(EMG 和 EEG)并改善真实数据分类。仅基于 GPT-2 生成的 EEG 数据训练的模型可以以 74.71% 的准确率对真实 EEG 数据集进行分类,而基于 GPT-2 EMG 数据训练的模型可以以 78.24% 的准确率对真实 EMG 数据进行分类。在对 EEG 和 EMG 模型进行基准测试时,在每个交叉验证折叠中引入合成数据和校准数据。结果表明,使用其中一种或两种附加数据都可以改进算法。随机森林对 EEG 的分类准确率平均为 95.81% (1.46),当在训练期间引入合成的 GPT-2 EEG 信号时,该准确率上升到 96.69% (1.12)。同样,当训练数据通过合成 EMG 信号增强时,随机森林对 EMG 的分类准确率从 93.62% (0.8) 提高到 93.9% (0.59)。此外,正如预测的那样,使用合成生物信号进行增强还会提高训练期间未观察到的新受试者数据的分类准确率。最终使用 Robotiq 2F-85 夹持器进行实时手势控制,合成 EMG 数据增强显著提高了手势识别准确率,从 68.29% 提高到 89.5%。
本研究旨在探索人工智能与网络技术在教学中的应用。通过研究基于人工智能的智慧课堂教学模式以及利用网络技术进行网络教学的优缺点,以数学课堂为例,对教学过程中课堂教师的提问环节进行智能分析。针对教师提出的问题,采用卷积神经网络(CNN)和长短期记忆(LSTM)网络分类模型,按照问题内容和类型对问题进行分类,并进行实验验证。结果表明,在教师提问内容维度的分类结果上,CNN模型整体表现优于LSTM模型。CNN具有更高的准确率,关键知识点分类准确率达到86.3%。LSTM只有79.2%,CNN提升了8.96%。在教师问题类型的分类结果中,CNN的准确率更高。提示问题的分类准确率最高,达到了87.82%。LSTM只有83.2%,CNN提升了4.95%。CNN在教师问题分类结果中表现更好。
头皮脑电图是头皮电位与时间的关系图,因此,由于电极在头皮上的位置,它可以捕获空间信息,以及脑电波变化的时间信息。在本文中,我们提出了一种新方法,通过将信号合并到稀疏的时空框架中来组合表示空间和时间信息,以便计算机视觉领域的深度学习算法可以轻松地对其进行处理。在脑电图情绪识别设置中,还定义了模型对测试数据的熟悉度,并引入了一种数据拆分形式,使得模型必须在熟悉度最低的集合上执行。在 DEAP 数据集上训练 CapsNet 架构以执行跨主题二元分类任务,并分析了使用贝叶斯优化对超参数的调整。该模型报告称,对于 LOO 主题,最佳情况准确率为 0.85396,平均情况准确率为 0.57165,对于未见主题-未见记录分类,最佳情况准确率为 1.0,平均情况准确率为 0.51071,这与其他文献报告的结果相当。
摘要 — 我们提出了 MusicID,这是一种智能设备的身份验证解决方案,它使用音乐诱导的脑波模式作为行为生物识别方式。我们通过实验使用从真实用户那里收集的数据来评估 MusicID,当时他们正在听两种形式的音乐;一首流行的英文歌曲和个人最喜欢的歌曲。我们表明,使用从 4 电极商品脑波耳机收集的数据可以实现超过 98% 的用户识别准确率和超过 97% 的用户验证准确率。我们进一步表明,单个电极能够提供大约 85% 的准确率,而使用两个电极可以提供大约 95% 的准确率。正如用于冥想应用的商品脑感应耳机已经展示的那样,我们相信在智能耳机中加入干 EEG 电极是可行的,并且 MusicID 有可能为即将到来的智能设备浪潮提供切入点和持续的身份验证框架,这些智能设备主要由增强现实 (AR)/虚拟现实 (VR) 应用驱动。
摘要:脑癌很可能是近年来导致死亡的最主要原因。正确诊断癌症类型使专家能够选择正确的治疗方法和决策,从而挽救患者的生命。具有图像处理功能的计算机辅助诊断系统能够正确分类肿瘤类型,其重要性不言而喻。本文提出了一种增强方法,该方法可以使用深度学习和机器学习算法集合对磁共振图像 (MRI) 中的脑肿瘤类型进行分类。名为 BCM-VEMT 的系统可以对四个不同的类别进行分类,包括三类脑癌(神经胶质瘤、脑膜瘤和垂体)和非癌性(即正常类型)。开发了一种卷积神经网络来从 MRI 图像中提取深度特征。然后将这些提取的深度特征输入到多类 ML 分类器中,以对这些癌症类型进行分类。最后,使用加权平均分类器集合通过组合每个 ML 分类器的结果来实现更好的性能。该系统的数据集共有四类 3787 张 MRI 图像。BCM-VEMT 的表现更佳,胶质瘤类准确率为 97.90%,脑膜瘤类准确率为 98.94%,正常类准确率为 98.00%,垂体类准确率为 98.92%,总体准确率为 98.42%。BCM-VEMT 在对脑癌类型进行分类方面具有重要意义。
在训练中,该工具对结果进行分类的准确率为 85%,而在使用新数据的最终测试中,该工具对哪些参与者患精神病的风险较高进行预测的准确率为 73%。根据结果,该团队认为,为被确定为临床高风险的人提供脑部 MRI 扫描可能有助于预测未来精神病的发病率。
据估计,随着人口老龄化,糖尿病发病率将从19.9%增加到65-79岁的1.112亿人,预计到2030年糖尿病患者将继续增加到5.78亿人,到2045年将增加到7亿人。机器学习是人工智能的一种,旨在理解或识别数据结构并将数据转换为模型。机器学习在健康领域的应用正在迅速增长,越来越多的健康研究人员在研究中使用机器学习算法。一些机器学习算法可以用来做预测,其中之一就是预测糖尿病的分类算法。根据所用几种算法的比较结果,朴素贝叶斯和梯度提升分类算法具有其他算法的最佳值。梯度提升算法在线性样本上取得了较高的效果,准确率为77.09%,f值达到83.39%。朴素贝叶斯对随机样本测试的结果最优,准确率为 76.57%,f 度量值为 82.82%。分层样本测试结果中准确率最高的是梯度提升算法,准确率为77.34%,f值达到83.39%。
关键信息 • 鉴于血管伤口的复杂性和动态性,其评估仍然具有挑战性;人工智能和机器学习方法可以帮助进行伤口分析。• 利用 2957 张亚洲血管伤口图像,开发了机器学习模型来分析伤口图像。使用可解释性方法来解释人工智能决策推理。• 伤口图像分析模型对伤口图像的分类准确率为 95.9%(AUC 0.99),自动估计深度分类和伤口测量准确率为 85.0%(AUC 0.97)和 87.1%(AUC 0.92),伤口分割准确率为 87.8%(AUC 0.95)。• 随着进一步发展,它可以用作临床决策支持系统并集成到现有的医疗保健电子系统中。
摘要 本研究使用健康受试者和癫痫患者的脑电信号记录公共数据集构建了三个时间复杂度较低的简单分类器,分别是决策树、随机森林和 AdaBoost 算法。首先对数据进行预处理,提取代表大脑活动的短波电信号。然后将这些信号用于选定的模型。实验结果表明,随机森林在检测脑电信号中是否存在癫痫发作方面准确率最高,为 97.23%,其次是决策树,准确率为 96.93%。表现最差的算法是 AdaBoost 评分准确率,为 87.23%。此外,决策树的 AUC 得分为 99%,随机森林为 99.9%,AdaBoost 为 95.6%。这些结果与时间复杂度更高的最先进的分类器相当。
【摘要】本文回顾了基于人工智能的腹部CT成像非创伤性病变检测模型的文献,以确定使用人工智能检测腹部器官疾病和急腹症的现状和挑战。我们搜索了PubMed和Google Scholar,提取了106篇参考文献。大多数研究旨在检测肝脏、肾脏和结肠的肿瘤,肝脏肿瘤和肾结石的检测准确率较高,而胃肠道疾病的检测准确率较低。在15篇关于急腹症的参考文献中,肾和输尿管结石和结肠炎占10篇。主要的挑战是数据集不足以检测肾和输尿管结石。在检测准确率相对较低的结肠炎检测中,测量结肠壁厚度的方法会导致假阴性和对其他器官的误检。