在经过一次干燥炉或在批量干燥炉中循环一次后,评估沿屏蔽导电路径之一的点对点电阻。使基材再进行一次干燥循环。沿同一路径再次测量点对点电阻并将其与原始读数进行比较。如果电阻减小幅度小于 10%,则表示油墨在第一次干燥循环或经过干燥炉后基本干燥。如果电阻减小幅度超过 10%,则需要更多干燥时间才能完全去除溶剂。如果溶剂型油墨在丝网上停留一段时间,随着溶剂的蒸发,油墨将逐渐变稠。如果油墨要在非活动印刷机上停留一段时间,可以通过汇集油墨以减少表面积而不是使其分散在大面积上来最大限度地减少溶剂蒸发。汇集油墨会减少表面积,从而减慢干燥过程。务必检查从丝网上回收的油墨的粘度,并在彻底混合的同时添加少量溶剂以恢复粘度。只要油墨还未完全干燥和硬化,就可以添加溶剂来回收增稠的油墨。稀释和清洁如有必要,使用溶剂 30 稀释油墨。使用 MEK 或合适的屏幕清洁剂清洁屏幕或工具的表面。
5.1 概述................................................................................................................................ 13 5.2 对接接头.......................................................................................................................... 13 5.3 T 形接头或十字接头........................................................................................................ 13 5.4 搭接接头...................................................................................................................... 14 5.5 槽焊...................................................................................................................................... 14 5.6 螺柱焊...................................................................................................................................... 15 5.7 焊缝尺寸的确定.................................................................................................................... 15 5.8 承受高拉应力的结构焊缝.................................................................................................... 17 5.9 减小的焊缝尺寸.................................................................................................................... 17 5.10 支柱和横梁的端部连接.................................................................................................... 17 5.11 替代方案........................................................................................................................ 17
摘要 虽然膜基固态纳米孔的电模型已经得到很好的建立,但是硅基金字塔纳米孔由于两个显著特点而无法应用这些模型。一是其35.3°半锥角,这给纳米孔内移动离子带来了额外的阻力。二是其入口为矩形,这使计算访问电导变得困难。本文,我们通过引入有效电导率,提出并验证了一种硅基金字塔纳米孔的有效传输模型 (ETM)。半锥角的影响可以用减小的扩散系数 (有效扩散系数) 等效地描述。由于扩散系数的减小会导致电导率减小,因此在 ETM 中采用有效电导率来计算体积电导率。在经典模型中,使用本征电导率。我们使用自上而下的制造方法来生成金字塔形硅纳米孔,以测试提出的模型。与经典模型较大的误差(大多数情况下为25%)相比,ETM预测电导率的误差小于15%。我们还发现当过量离子浓度与本体离子浓度的比值小于0.2时,ETM是适用的。最后证明了ETM可以估算金字塔硅纳米孔的尖端尺寸。我们相信ETM将为金字塔硅纳米孔的评估提供一种改进的方法。
通过对1:15比例隧道火灾试验数据的分析,研究了采用纵向通风方式的隧道中多车辆间的火灾蔓延特性。在此基础上,提出了一种简单的多火源隧道气体温度理论模型,并用于试验数据的分析。结果表明,对于位于火灾下游相同距离的物体(木桩),火灾沿隧道蔓延的速度越来越快。通过模型和全尺寸隧道火灾试验对多火源简化温度模型进行了验证。进一步利用该模型预测了火灾蔓延至第二和第三个物体的临界条件。与试验数据的对比表明,平均过热温度465 K(或等效入射热流密度18.7 kW/m 2 )可作为火灾蔓延的判据,并通过其他模型试验和全尺寸试验进一步验证了这一点。结果表明,临界火灾蔓延距离随热释放速率的增加而单调增加,随隧道周长的增加而减小。对于热释放速率相等的多火源,随着前两个火源间距的增加,第二个火源到第三个火源的临界火蔓延距离减小,但第一个火源到第三个火源的总火蔓延距离增大;如果下游火源处的总热释放速率大于前一个火源处的总热释放速率,临界火蔓延距离变大。
• 低电源电压:可在低至 2.3 Vdc 的电压下工作,可用于低能耗和无线兼容应用,以增强节能效果并延长系统电池寿命。• 低功耗:当不在应用中进行测量时,传感器进入休眠模式,仅消耗 1 µA 的电量,而在电池供电系统中全速运行时则消耗 650 µA 的电量。休眠模式有助于最大程度地延长电池寿命、减小电源尺寸并降低应用的整体重量。
栅极电容和沟道中的电场将通过连接在栅极下方的未掺杂区域而减小。设计了器件结构并在ATLAS中进行仿真。两种器件均采用GaAsP/6H-SiC/GaN材料设计,并进行了漏极电流模拟和模拟仿真[12]。表1给出了结构模拟参数的有效使用。各种模型和方法都用于器件模拟。模型和方法在表2和表3中给出
在低压方面,集成在微推进器中的压电元件的选择基于其低功率要求、减小尺寸和质量、高冲程和低力。对于此类应用,多层弯曲执行器是首选,因为它们可以在小封装中提供快速而精确的运动。压电执行器的特性范围 两种执行器的特性需要适应相关应用的特定负载和操作条件。下面的比较表很好地说明了微推进器应用中压电执行器可以实现的广泛特性。
现代高压功率 MOSFET 的发展催生了超快开关和超低电阻器件。最新的英飞凌 CoolMOS™ 第 7 代技术在 600 V 至 950 V 的电压等级范围内提供无可争议的一流 R DS(on)。英飞凌的技术领先地位不仅使新的更小封装(如 ThinPAK 5x6 或 SOT-223)成为可能,而且还使现有封装中 R DS(on) 值小得多的 CoolMOS™ 产品成为可能。仅在十年前生产的类似功率半导体需要至少三倍的面积才能实现相同的性能。换句话说,前几代功率 MOSFET 的 R DS(on) 至少是现代 CoolMOS™ 第 7 代芯片(具有相同的芯片面积)的三倍。然而,SJ MOSFET 技术向超快开关发展的进步也带来了某些缺点。尽管现代高压 SJ MOSFET 因其开关模式 (SM) 操作而受到赞赏,但它们也存在一些不适合某些应用的局限性。有两个特点值得注意:首先,最新的 HV SJ MOSFET 的安全工作区 (SOA) 图变窄了。面积减小的原因是,对于给定的通道上电阻 (R DS(on) ),当今最先进的功率 MOSFET 使用的硅片面积要小得多。不幸的是,这也意味着特定 R DS(on) 的功率处理能力 (P tot ) 会降低,因为热阻值 (R th 和 Z th ) 会随着芯片面积的减小而增加。这可以用以下公式来解释: