• 推迟昂贵的输配电基础设施升级 • 提供关键的电网服务 • 支持可再生能源发电机的整合,包括太阳能和风能 • 缓解电网拥堵(减少电压降低和停电) • 电费管理,家庭和企业备用电源
1. 在适当的时间注入和吸收适当数量的有功功率和无功功率,以最佳地支持网络电压并减少电压相位不平衡。 2. 在峰值负载期间注入有功功率和无功功率,以减少馈线上的峰值负载。 3. 自主管理电池的充电状态,而不影响电网支持功能。 4. 无缝集成来自外部控制器(例如 ADMS 或 VPP 系统)的外部充电/放电命令。 5. 允许参与基于本地(分散)频率测量的 FCAS 市场。 6. 自主运行,不严重依赖通信。在有通信和上游信息的情况下,它会优化其性能。
Organic electrochemical transistors (OECTs), [16,18–27] is currently one of the most studied organic electronic devices and is explored in various applications, such as in fully printed logic circuits, [16,26] active matrix addressed displays, [17] dis- play driver circuits, [19] sensors, [22,23,28–33] neuromorphics, [24] just仅举几例。可以使用不同的打印技术,例如丝网印刷,[19,21] 3D打印,[30]喷墨打印,[34]和其他流程来通过具有成本效益的协议来制造。[35,36]基于OECT的逻辑门和电路也进行了广泛的研究,[35,37-40],其中逆变器作为任何组合逻辑电路的基本组件都起着关键作用。通过采用基于OECT的逆变器[16,26,35]作为高级电路的基本组成部分,可以实现各种形式的基于OECT的数字电池[16,24,35]。在有机电子设备中,通过考虑针对目标的最终应用,在低电压和低功率下运行的电路是完全需要的。通过降低电路的操作电压率,可以最大程度地减少电压应变和降解风险。[16]然后,这允许长时间的操作寿命,与其他技术平台的简单集成以及与通信基础架构的连接。例如,在物联网(IoT)应用程序中,为了降低使用大量电子组件在紧凑型电路中使用大量电子组件的整体功耗,要求对单个逻辑组件的有效使用来扩展IoT生态系统。要意识到这样的电路,必须降低系统元件的操作电压水平。由于逆变器是逻辑电路的关键要素,因此最终电路的工作电压范围可以在很大程度上降低
(1)Zuo,G。; Linares,M。; Upreti,t。; Kemerink,M。有机半导体中水诱导的陷阱能量的一般规则。自然材料2019,18,588593。https://doi.org/10.1038/s41563-019-019-0347-y。(2)Scheunemann,d。; Vijayakumar,V。; Zeng,H。; Durand,P。; Leclerc,n。; Brinkmann,M。; Kemerink,M。摩擦和绘画:改善有机半导体热电功率因子的通用方法?高级电子材料2020,6(8),2000218。https://doi.org/10.1002/aelm.202000218。(3)Xu,K。;太阳,h。 Ruoko,T.-P。; Wang,G。; Kroon,R。; Kolhe,N。B。; puttisong,y。刘x。 Fazzi,D。; Shibata,K。;杨,C.-y。;太阳,n。 Persson,G。; Yankovich,A。b。; Olsson,E。; Yoshida,H。; Chen,W。M。; Fahlman,M。; Kemerink,M。; Jenekhe,S.A。; Müller,c。 Berggren,M。; Fabiano,S。全聚合物捐赠者受体异质膜中的地面电子转移。nat。mater。2020,19,738744。https://doi.org/10.1038/s41563-020-020-0618-7。(4)Kompatscher,A。; Kemerink,M。关于有效温度seebeck棘轮的概念。应用。物理。Lett。 2021,119(2),023303。https://doi.org/10.1063/5.0052116。 (5)Derewjanko,d。; Scheunemann,d。; Järsvall,E。; Hofmann,A。I。; Müller,c。 Kemerink,M。定位在高掺杂浓度下提高了电导率。 高级功能材料N/A(N/A),2112262。https://doi.org/10.1002/adfm.202112262。 (6)Upreti,t。;威尔肯(Wilken)张,h。 Kemerink,M。光生荷载体的缓慢松弛会增强有机太阳能电池的开路电压。 J. Phys。 化学。Lett。2021,119(2),023303。https://doi.org/10.1063/5.0052116。(5)Derewjanko,d。; Scheunemann,d。; Järsvall,E。; Hofmann,A。I。; Müller,c。 Kemerink,M。定位在高掺杂浓度下提高了电导率。高级功能材料N/A(N/A),2112262。https://doi.org/10.1002/adfm.202112262。(6)Upreti,t。;威尔肯(Wilken)张,h。 Kemerink,M。光生荷载体的缓慢松弛会增强有机太阳能电池的开路电压。J. Phys。 化学。J. Phys。化学。Lett。 2021,12(40),98749881。https://doi.org/10.1021/acs.jpclett.1c02235。 (7)Urbanaviciute,i。; Garcia-Iglesias,M。; Gorbunov,A。; Meijer,E。W。; Kemerink,M。基于硫酰胺的超分子有机盘中的铁晶和铁晶和负压电性。 物理。 化学。 化学。 物理。 2023,25(25),1693016937。https://doi.org/10.1039/d3cp00982c。 (8)Wang,Y。; Yu,J。;张,r。 Yuan,J。; Hultmark,S。;约翰逊,C。E。; N. Pallop; Siegmund,b。 Qian,d。;张,h。 Zou,Y。; Kemerink,M。; Bakulin,A。 a。; Müller,c。 Vandewal,K。; Chen,X.-K。; Gao,F。三元有机太阳能电池中开路电压的起源和设计规则,以最大程度地减少电压损耗。 NAT Energy 2023,8,111。https://doi.org/10.1038/S41560-023-01309-5。 (9)Scheunemann,d。;戈勒,c。托尔曼(C。) Vandewal,K。; Kemerink,M。对有机太阳能电池性能的平衡或非平衡意义。 高级电子材料2023,9(10),2300293。https://doi.org/10.1002/aelm.202300293。 (10)Dash,a。; Guchait,S。; Scheunemann,d。; Vijayakumar,V。; Leclerc,n。; Brinkmann,M。;Lett。2021,12(40),98749881。https://doi.org/10.1021/acs.jpclett.1c02235。(7)Urbanaviciute,i。; Garcia-Iglesias,M。; Gorbunov,A。; Meijer,E。W。; Kemerink,M。基于硫酰胺的超分子有机盘中的铁晶和铁晶和负压电性。物理。化学。化学。物理。2023,25(25),1693016937。https://doi.org/10.1039/d3cp00982c。(8)Wang,Y。; Yu,J。;张,r。 Yuan,J。; Hultmark,S。;约翰逊,C。E。; N. Pallop; Siegmund,b。 Qian,d。;张,h。 Zou,Y。; Kemerink,M。; Bakulin,A。a。; Müller,c。 Vandewal,K。; Chen,X.-K。; Gao,F。三元有机太阳能电池中开路电压的起源和设计规则,以最大程度地减少电压损耗。NAT Energy 2023,8,111。https://doi.org/10.1038/S41560-023-01309-5。 (9)Scheunemann,d。;戈勒,c。托尔曼(C。) Vandewal,K。; Kemerink,M。对有机太阳能电池性能的平衡或非平衡意义。 高级电子材料2023,9(10),2300293。https://doi.org/10.1002/aelm.202300293。 (10)Dash,a。; Guchait,S。; Scheunemann,d。; Vijayakumar,V。; Leclerc,n。; Brinkmann,M。;NAT Energy 2023,8,111。https://doi.org/10.1038/S41560-023-01309-5。(9)Scheunemann,d。;戈勒,c。托尔曼(C。) Vandewal,K。; Kemerink,M。对有机太阳能电池性能的平衡或非平衡意义。高级电子材料2023,9(10),2300293。https://doi.org/10.1002/aelm.202300293。(10)Dash,a。; Guchait,S。; Scheunemann,d。; Vijayakumar,V。; Leclerc,n。; Brinkmann,M。;