•比较和对比有丝分裂和减数分裂的基本特征,重点是这些细胞生殖过程中同源染色体的运动。•提出科学问题,提出书面假设,作为该问题的初步答案,并在特定实验的背景下产生与该假设一致的可观察到的预测。•展示了对分子系统发育学的理解,包括追踪基因进化史的概念(例如基因复制,水平基因转移)。•描述细胞器的基本结构和功能。•描述光合作用的组成部分以及每个组件的主要步骤和产品。•描述细菌,古细菌和真核生物之间的最基本相似性和差异,以及“生物”与动物,植物和真菌之间的进化关系。
在复杂的细胞生物学世界中,单倍体细胞在生命的形成和延续中起着至关重要的作用。这些专门的细胞只有一组染色体,是繁殖和遗传多样性过程的基础。本文旨在阐明单倍体细胞在生物系统背景下的特征,功能和意义。HAPLOID细胞是一种仅包含一组完整的染色体的细胞,通常以生物学术语表示为“ N”。这与包含两组染色体的二倍体细胞形成对比,称为“ 2n”。单倍体细胞是通过称为减数分裂的过程产生的,其中二倍体细胞经历了两个连续的分裂,以将其染色体数减少一半。配子,例如人类的精子和卵细胞,是单倍体细胞的经典例子[1,2]。
p lant g enetics -genbt044n s emester:f所有e CTS:3 r equirement:e xam d escription:学生将学习在生物细胞中携带生物学信息的分子的结构和作用,在生命细胞,组织和遗传性材料的复制中。他们了解高等植物的遗传结构和功能。细胞周期的阶段以及植物有丝分裂和减数分裂的过程及其遗传后果,特别着重于遗传变异性的来源,与锁植物双重施肥有关的宏观和微孢子的形成。Mendel所描述的遗传的基本定律在园艺植物中进行了说明,其次是Mendelian以外的其他遗传过程的例子,并以园艺植物的例子进行了说明。我们将回顾多倍体植物如何在园艺生产,进化,它们的遗传后果,多倍体类型及其潜在用途中重要。
- 解释现代遗传学的发展方式以及它如何影响现代医学,农业和进化,以了解如何将科学方法应用于生物学问题。- 在减数分裂的染色体行为方面解释遗传比率,能够基于修改后的孟德尔比率来推断不同基因的遗传相互作用。- 对测试杂交的定量分析,以评估多个基因的遗传连锁和映射。- 预测各种突变对基因功能的影响提出了合理的假设,以解释分子水平上的优势和隐性表型。- 解释并区分DNA复制和修复,转录和蛋白质翻译的关键特征,包括涉及的细胞成分,在原核生物和真核生物中都可以了解基因的功能。- 对用于分析DNA,RNA和蛋白质的各种分子遗传学方法的知识,以证明如何使用这些分子技术来理解基因功能。
- 作业:小型编程任务,将帮助学生应用学习概念。家庭作业将自动分级。学生将可以使用平台来测试他们的作业;该系统将测试提交并列出任何错误和通过的测试数量。每项家庭作业可以根据需要进行多次分级以提高性能。建议尽快开始作业,以便有时间与TA或教练讨论任何问题。作业也被束缚,这意味着您必须在移至下一个练习之前完成每项练习(至少有70%的正确性)。在截止日期后对您的作业进行分级,将通过从作业等级中减数来处罚。您的成绩是正确性(C)和及时性(T)的产物:𝐺=𝐶×𝑇,其中计算及时性的逻辑函数的逻辑函数(H)您的作业迟到了:𝑇=
育种过程中利用的自然遗传变异主要由减数分裂期间同源染色体之间的相互 DNA 交换(交叉,CO)来保证。CO 的形成发生在减数分裂染色体轴的背景下,减数分裂染色体轴是一种蛋白质结构,姐妹染色单体在减数分裂前期 I 期间沿着该结构排列成环状碱基阵列。在包括大麦 (Hordeum vulgare) 在内的植物中,严格的 CO 调控导致有限数量的 CO 偏向染色体末端,而大部分基因组(特别是间质染色体区域)在育种过程中保持未开发状态。因此,需要新的策略和工具来修改减数分裂重组结果。为了能够对(新的)减数分裂蛋白进行蛋白质组学鉴定,我们在拟南芥减数分裂细胞中使用基于 TurboID (TbID) 的邻近标记对两种减数分裂染色体轴相关蛋白 ASYNAPTIC1 (ASY1) 和 ASYNAPTIC3 (ASY3) 进行标记。在已鉴定的 39 种候选蛋白中,鉴定出大多数已知的轴相关蛋白和新蛋白。在突变体筛选后,我们鉴定出(至少)四种具有减数分裂突变表型的新候选蛋白。其中,一种候选蛋白被发现是联会复合体 (SC) 的一部分。如果没有它,SC 形成就会中断,交叉形成就会减少,而 CO 水平就会增加,CO 干扰几乎被消除。为了快速评估和研究大麦的减数分裂基因,我们在 Cas9 表达植物中建立了大麦条纹花叶病毒诱导的基因编辑 (BSMVIGE) 和基于多重晶体数字 PCR (dPCR) 的单花粉核基因分型。 BSMVIGE 能够分离出减数分裂基因缺陷的大麦植物,而无需稳定的遗传转化,而单花粉核基因分型能够在不增加分离后代群体的情况下高通量评估重组率。我们的装置应用于大麦中的各种减数分裂基因,表明大麦重组格局可以改变。总之,基于 TbID 的邻近标记能够识别减数分裂细胞等稀有细胞类型中的蛋白质邻近蛋白,而 BSMVIGE 与单花粉核基因分型相结合,能够快速解析大麦以及其他作物中的减数分裂基因功能。
睾丸负责精子产生和雄激素合成。睾丸发育和功能的异常导致性发展和男性不育症的疾病。当前,没有用于对睾丸进行建模的体外系统。在这里,我们使用Transwell插入物从新生小鼠初级睾丸细胞中产生睾丸类器官,并表明这些类型器可以生成类似小管的结构和类似于体内睾丸的细胞组织。基因表达分析表明了一种概括体内睾丸中观察到的特征。胚胎睾丸细胞,但没有成年睾丸细胞也能够形成器官。这些类器官可以在培养物中维持8-9周,并显示出进入减数分裂的迹象。我们进一步开发了定义的培养基组成,这些培养基组成促进了未成熟的Sertoli细胞和Leydig细胞状态,从而在体外实现了器官成熟。这些睾丸类器官是一种有前途的模型系统,用于睾丸发育和功能的基础研究,并在阐明和治疗发育性疾病和不育的情况下进行了翻译应用。
摘要:Aurora 激酶属于高度保守的丝氨酸/苏氨酸激酶家族,在细胞周期调控中发挥关键作用,由三个成员组成:Aurora 激酶 A、B 和 C,它们是维持染色体稳定性所必需的关键有丝分裂调节剂。Aurora 激酶在有丝分裂的多个事件中起着至关重要的作用,例如协调染色体和细胞骨架事件、调节纺锤体组装检查点通路和胞质分裂,以确保细胞周期的顺利进行。除了有丝分裂功能外,Aurora 激酶还参与减数分裂的调节。在各种实体和血液系统癌症中都检测到了 Aurora 激酶的基因扩增/突变和过表达。在人类肿瘤中,Aurora 激酶表现出与其有丝分裂作用相关的致癌作用,从而驱动癌细胞增殖和存活。 Aurora 激酶活性失调会导致着丝粒功能、纺锤体组装、染色体排列和胞质分裂失败,最终导致有丝分裂异常和遗传不稳定。这些发现强调了 Aurora 激酶在癌症中的关键作用,促使人们认识到它们是癌症治疗的重要靶点。本综述概述了 Aurora 激酶的结构和功能,并阐明了它们在癌症中的致癌作用。
肿瘤抑制剂BRCA1-BARD1复合物调节许多细胞过程。对其肿瘤抑制功能的批评是其在基因组完整性中的作用。尽管环E3泛素连接酶活性是复合物的唯一已知酶促活性,但对BRCA1-BARD1 E3泛素连接酶活性的体内需求一直存在争议。在这里,我们使用C探索Brca1-bard1 E3泛素连接酶活性的作用。elesgans。遗传,细胞生物学和生化分析E3连接酶活性有缺陷的突变体表明,在DNA损伤修复和减数分裂的背景下,Complex的E3连接酶依赖性和独立功能既存在。我们表明,E3连接酶活性对于复合物的核积累至关重要,特别是集中在减数分裂重组位点,而在增殖生殖细胞中的DNA损伤位点不重要。虽然仅BRCA1才能进行单位素化,但BRCA1需要Bard1来促进聚氨基化。我们发现,通过推动BRCA1的核积累和自我关联,可以部分缓解E3连接酶活性和BARD1在DNA损伤信号传导和修复中的需求。我们的数据表明,除了E3连接酶活性外,BRCA1还可以在DNA损伤信号传导和修复中起结构作用,而BARD1在增强BRCA1功能方面发挥了可观的作用。