最近,牙科CAD/CAM技术和粘合技术的开发和渐进性已使新型牙科材料广泛使用。减法制造和增材制造是使用金属,陶瓷和复合材料制造牙科假体,正畸设备和手术指南等的CAD/CAM系统的主要类别。减法制造过程(例如铣削)可以减少由于高工业标准下的铸造过程而导致的缺陷和毛孔。选择性激光熔化(SLM)之类的添加剂制造过程可以通过将金属粉末融合而没有太多孔隙率来产生金属底物。仍然没有足够的证据来使用新技术研究新材料和加工程序。传统铸造技术仍然是牙科金属加工中的主要方法。因此,我们很高兴邀请您提交一份手稿,包括原始研究文章和有关本期特刊的评论,涉及基于金属和基于陶瓷的牙科材料的任何进步。
数学:孩子们已经开始学习 20 以内的减法和加法这一新主题。本周他们将学习双倍和近双倍,以及这如何帮助他们解决减法和加法问题。历史:本周孩子们将继续学习过去的玩具,以及它们与现在的玩具相比有哪些特点。他们将学习如何描述它们,并识别它们的相同之处和不同之处。地理:本周孩子们将探索不同类型的天气以及天气如何变得危险。他们还将学习如何解读天气图,以及天气图如何帮助预测天气何时会变得危险,例如洪水警报和生命危险。宗教教育:本周孩子们将继续学习特殊书籍。本周他们将关注《古兰经》,并了解为什么这对穆斯林来说很特别。个人发展与幸福:本周孩子们将继续探索大脑。他们将了解当我们快乐和悲伤时会发生什么,以及大脑的不同部分(海马体、杏仁核和前额叶皮层)如何反应。艺术:本周孩子们将专注于学习如何在形状打印时使用原色。
添加剂制造(AM)技术被认为是过去几十年的常规制造过程的替代方法[1,2]。快速生产各种材料的近净形成产品被认为是促进其在群众规模上促进其应用的主要优势[3]。此外,单台计算机在制造许多复杂形状和组件上的易于使用,这些形状和组件否则很难由单个召开加工操作来实现,这是他们的卖点[4 E 6]。但是,由于现在考虑了AM技术在几个领域的大规模生产,因此正在迅速观察到新的挑战,需要包含并解决以允许AM的当前速度[7,8]。薄壁结构,复杂的弯曲形状和晶格结构是突出的几何成分之一,首先是通过AM技术生产的[9,10]。由于高材料损失,尺寸问题,设备构成和内部空腔的制造,尤其是针对晶格结构,因此常规制造程序具有严格的限制[11,12]。但是,另一方面,通过AM生产这些组件也有一些限制和局限性。由于应用高功率热源,通常无法实现高精度和严格遵守公差要求[13,14]。此外,基于材料的基于材料的制造概念允许在制造过程中添加残留物质[15,16]。此外,支持另一方面,减法加工程序可导致显着高质量的产品[17]。对于减法加工,几何条件并不总是有利的,这是由于几何复杂性[18,19]。因此,这两个程序的耦合应用都可以创建出色的制造策略。在这两种技术的这种混合方法中,添加剂制造可以创建具有近乎净形状几何和尺寸特征的原始部分[20],而减法加工操作则可以用于重新填充这些原始部分以实现所需的尺寸准确性和表面效果[21]。
考虑图 1 所示的乐高结构,其中小雕像被放置在屋顶下,屋顶一角由一根柱子支撑。你会如何改变这个结构,以便可以在不压坏小雕像的情况下将砖石砖放在上面,同时记住每增加一块砖石砖要花费 10 美分?如果你和 Adams 等人 1 在第 258 页报道的一项研究中的大多数参与者一样,你会增加柱子来更好地支撑屋顶。但更简单(且更便宜)的解决方案是移除现有的柱子,让屋顶简单地搁在底座上。在一系列类似的实验中,作者观察到人们始终会考虑增加组成部分的变化,而不是减少组成部分的变化——这种趋势对日常决策具有广泛的影响。例如,Adams 及其同事分析了档案数据并观察到,当新任大学校长要求提出一些可以让大学更好地服务于学生和社区的改革建议时,只有 11% 的回复涉及删除现有的法规、做法或计划。类似地,当作者要求研究参与者制作一个由绿框和白框组成的对称 10×10 网格时,参与者经常将绿框添加到网格较空的一半,而不是将其从较满的一半中移除,即使后者效率更高。Adams 等人证明,参与者提供的减法解决方案如此之少的原因不是因为他们没有认识到这些解决方案的价值,而是因为他们没有考虑到它们。事实上,当说明明确提到减法解决方案的可能性,或当参与者有更多思考或练习的机会时,提供减法解决方案的可能性会增加。因此,人们似乎倾向于应用“我们可以在这里添加什么?”
•将总水泥输出转化为胶结产品:TPI以平均水泥/水泥比为101.38%调整了IEA的活性输出,从GCCA从2005-2019的数据中计算出数字(GNR)项目[8]。•CO 2从现场发电的减法:GNR数据库包括有关全球电力发电的数据和国家分裂的数据。tpi假定自我产生的电力的排放强度与三种考虑的情况下的全球网格强度相当。2019年总电场发电量乘以全球电网强度,该电网强度会随着时间而变化。6然后从总范围1水泥CO 2排放中减去现场发电产生的发射。•CO 2从使用替代燃料的使用中的减法:根据GCCA的定义,水泥部门中的“总”排放排放不包括现场发电中的排放,但包括使用与“ Net”发射相反的替代燃料的排放。GNR数据显示,净强度平均比2019年的总强度低4.4%。TPI调整后的范围1的排放量相应地占95.6%。
在过去的几年中,几项作品证明了光子减去gaus-sian状态的优势,用于各种量子光学和信息协议。在大多数这些作品中,没有清楚地研究了与光子减法相关的量子状态的优势与通常增加的能量之间的关系。在本文中,我们研究了注射多个光子歼灭的挤压真空状态与连贯状态的单个相关状态和相关相位估计的表现的性能。对于单相估计,尽管使用多光子歼灭的每种模式平均光子挤压真空状态与经典策略相比,在平均平均光子的平均光子中提供了优势,但如果保留了总输入能量,则固定了总输入能量,但由于光子亚收集的光子的优势完全丢失。然而,对于类似情况下的相关情况,似乎来自光子统计的能量上升和改善。特别是量子对光子减法状态的敏感性对损失似乎更强大,在挤压真空状态下,在检测效率的现实价值的情况下,相对于挤压真空状态的优势约为30%。
我们假设在 FFC 之前执行了背景减法。FFC 会根据所用镜头的类型、光圈、焦点、测量光区的大小及其距离等而改变。很难准确创建,因为很难获得足够大小的均匀光源,而且所需的校正会随着条件的变化而发生很大变化。小心。一种配置的 FFC 可能不适用于另一种配置
• 质量:将样品质量增加到 4-11 克(更高的炉子,更高的样品)• 半径:先用水测量半径,再用盐测量• 高度:更高的样品管(~30 厘米)• 像素分辨率:更高质量的相机、图像堆叠、图像减法。 开发一种更高通量的推杆膨胀法——最近在液态盐容器方面取得了成功(定制石墨支架) 为钚做准备……
简介:股骨头(ONFH)的骨坏死会产生畸形和残疾,尤其是在年轻患者中。传统上,临床医生在灌注MRI扫描中视觉上估计灌注不足的百分比,为患者预后和疾病阶段提供了重要信息。先前的一项研究开发了hipvasc(髋关节血管)软件,该软件是客观地量化低血管性百分比,但需要通过训练有素的观察者进行无效的手动分割,并设定了通常将人工体鉴定为血管组织的灰色值阈值。在这里,我们提出了CVHIPHASC(计算机视觉髋关节血管),它利用开源MaskRCNN计算机视觉(CV)模型来自动化灌注MRIS分析。这项研究的目的是评估股骨骨epiphysis分割和灌注MRI上的股骨骨physise和非血管组织中的MaskRCNN CV模型的准确性。我们假设使用填充模型的自动定量分析将以高效率提供准确的股骨头和低血压组织的分割。方法:在国际珀斯研究小组(IPSG)中进行了525例灌注MRI扫描患者,并将MRI扫描作为BMP文件出口。鉴定出预防对比,后对比和减法系列,并将运动伪像,缺失序列或质量不佳的图像的患者排除在研究之外,剩下505例患者。该数据集分为351名患者的培训数据集,50名患者的验证数据集和104名患者的测试数据集。三名受过训练的观察者手动将股骨外骨分解在预对比图像上。1)。然后将股骨外侧分析区域(ROI)映射到减法图像中,以充当边界,观察者在股骨外周期ROI中的减法图像上注释了低血管区域。联合(IOU)的交集用于量化每个2D切片上的掩模精度。类内相关性(ICC)与HIPVASC软件的专家临床医生的视觉估计和测量值相比,评估了CV模型低血压测量百分比的准确性。结果部分:将股骨骨分析分割为81%IOU,为不血管性测量提供了准确的边界(图在带有股骨骨外侧边界覆盖的减法图像中,用78%的IOU分割了低血压组织(图2)。当比较训练有素的观察者的测量值与CVHIPHASC的ICC不血管性百分比为0.79(95%CI:0.70,0.86)。CV模型提供了高效的分析,在10秒内处理每个患者的灌注MRI扫描。尽管股骨头边界经常存在,在各种位点进行扫描之间的对比度和成像技术的变化,以及对减法图像的对比度的挑战,但该模型还是能够准确地识别出subtractiation图像中的前对结构图像和非血管造影图像中的外周边界。讨论:CVHIPSVASC以很高的精度和效率分割了股骨外侧分析和低血压区域,提供了与专家临床医生的视觉估计以及先前的HIPVASC软件一致的低血压测量百分比。图像和表:cVhipVASC不需要耗时的手动分割,也不需要使用灰色值阈值,这导致hipvasc将伪像将伪像误认为是血管区域。此外,虽然训练有素的临床医生在HIVPASC或视觉估计中的测量值有时会有所不同,但CVHIPHASC在每次扫描中都采用标准的客观模型。显着性/临床相关性:CVHIPHASC提供了一种有希望的深度学习方法,用于高效,准确地定量灌注MRIS,加速了股骨头骨质症的临床研究速度,并为临床医生提供了快速的预后工具。