摘要 摘要 人类肢体或器官的丧失仍然是一个挑战,尤其是在人们不断依赖触摸屏和任务的世界中。因此,患者几乎无法承受和应对因这种丧失而遇到的越来越多的限制。现代手段和技术,如先进的人工部件,减少了对残疾或失去肢体或器官的患者的限制。例如,手部假肢为改善人体肢体的功能能力提供了强有力的工具,从而提高了使用者的生活质量。然而,使用假肢的患者仍然遇到许多问题,例如,遭受完整的肢体和背部疼痛、假肢系统成本高以及与假肢性能相关的困难、控制不佳和更新困难。基于上述问题,目标是设计一种由重量轻的重型塑料制成的 3D 仿生手臂。目的是使用伺服电机代替步进电机,以减少延迟和减轻重量。目的还在于设计一个基于人工智能 (AI) 的仿生手臂程序,该程序可以进行修改以用于未来的目的,例如添加新手势和优化系统控制。新设计包括 3D 打印手臂、控制设计、测试电机和 EMG 传感器、选择具有成本效益的部件、模拟和最终确定真实原型。结合直接执行运动机制和仿生假肢的全尺寸模型,该开发旨在用于上肢的医疗康复。实验结果包括开发一个真正的基于 AI 的系统来定制使用神经网络控制的手势。结果还包括保持 EMG 传感器的准确和干净的读数。此外,新的仿生假肢手臂确保性能不会延迟,模仿手的正常功能。结果还表明,我们的设计在成本效益方面超越了现有的设计,前提是在其他几个规格上它是可比的。设计灵活且基于人工智能控制。作为未来的展望,可以在新的基于人工智能的设计中测试更多的算法,并测试更多的手势。
空间环境对低地球轨道柔性材料的影响 G. Bitetti (1) 、S. Mileti (1) 、M.Marchetti (1) 、P. Miccichè (1) (1) 意大利罗马“La Sapienza”大学航空航天和宇航工程系,Via Eudossiana 18,邮编 00184。电话 0039-0644585800,传真 0039-0644585670 电子邮件:grazia.bitetti@.uniroma1.it 摘要 未来的长期太空任务基于应用新型材料来替代金属材料,保持相同的机械和热光性能,但降低任务成本并满足结构设计要求。新的充气技术涉及使用柔性材料(纺织品、薄膜和低密度泡沫),以便获得小体积的可包装结构,从而增加有效载荷能力。由于与操作环境相关的破坏性因素,正确选择材料的起点是空间环境测试活动。本工作涉及对用于低地球轨道 (LEO) 充气应用的一些纺织品的测试活动,特别是 Kevlar、Zylon 和 Vectran。已经使用位于罗马 La Sapienza 大学航空航天系的 SASLab 实验室开发的两种不同的空间环境模拟器进行了环境测试,以研究高真空、热循环和原子氧效应。1. 简介未来长期太空探索任务最重要的要求是使用比机械同类产品更轻、更便宜的材料来设计空间结构,以保持相同的结构可靠性并延长使用寿命。将它们包装在更小的体积中的可能性可以降低任务成本。为了满足上述目标,已经开发出一种基于柔性结构设计的有前途的技术。充气技术涉及可展开结构,无论是否可刚性化,它都使用薄材料来减轻重量和提高包装效率:体积比最好的传统系统减少两倍以上。可展开结构可以轻松适应各种形状,生产成本低。过去,可扩展结构一直用于建造空间天线、太阳能电池阵、遮阳板和太空服。目前,越来越多的
添加剂制造(AM)为具有内部功能的复杂组件带来了重要的设计和制造机会,例如以前无法使用液体火箭发动机推力室。该技术可节省大量成本和计划减少,除了通过减轻重量和增加利润来优化新的绩效。特定于再生冷却的燃烧室和液体火箭发动机的喷嘴,添加剂制造具有形成复杂的内部冷却液通道和通道的关闭功能,可以包含具有单个操作的高压液体推进剂。使用激光粉床融合(L-PBF),大部分添加剂制造开发都集中在整体合金上,这些合金不允许对结构进行完全优化。国家航空航天局(NASA)完成了AM双金属L-PBF GRCOP-84铜合金燃烧室,具有AM Electron Beam Freeform Inconel 625结构夹克在低成本上级推进(LCUSP)项目下。正在开发一个名为“快速分析和制造推进技术”(RAMPT)的后续项目,以进一步扩展大型多合金推力室,同时将综合覆盖技术与大量储蓄机会相对。除了这些主要的制造开发外,分析建模工作还补充了过程开发,以模拟AM过程以减少构建失败和扭曲。RAMPT项目还在GRCOP-42的L-PBF之外,还为上述各种制造工艺的供应链介绍了供应链。RAMPT项目具有三个主要目标:1)推进吹粉的导向能量沉积(DED)以制造整体通道大型喷嘴,2)开发复合覆盖技术,以减少重量并为推力室内组件提供结构性能力,3)开发Bimetallic和多金属添加性添加性添加性产物和轴向物质的材料,以优化材料。本文将概述RAMPT项目,流程开发和硬件进展,迄今为止,材料和热火测试结果以及计划的未来发展。
摘要 聚对苯二甲酸乙二醇酯 (PET) 是一种理想的柔性 PCB 基材,具有成本低、生物相容性好、光学透明、易于加工和可回收等特点。这些优势与行业趋势特别一致,即电子产品无缝融入日常用品中。虽然 PET 与传统回流工艺大体不兼容,但光子焊接能够克服这种低温材料的挑战。光子焊接是一种快速兴起的方法,它依靠高强度广谱光(而不是热对流)选择性地加热焊料和电子元件,而不会损坏光学透明基材。在这项工作中,我们使用符合 SMEMA 标准的在线工具,演示了 SAC305 焊料合金的光子回流,以在 PET 芯柔性 PCB 上组装 0201 LED 元件。说明了光子工具固有的节能和产量优势,特别关注所得焊点的质量和一致性。加速热老化后验证焊点的功能完整性,并以工艺产量来表征可重复性。所得焊点的 X 射线显微镜和 SEM 横截面成像显示出坚固的金属间区域和低空洞密度。这些结果表明,光子焊接是一种实用的制造途径,可以实现 PET 柔性板独有的产品设计可能性。关键词:光子焊接、柔性混合电子器件、温度敏感、低温焊接、高通量焊接、闪光灯、LED。引言柔性印刷电路板 (flex PCB) 提供了广泛的设计可能性和用例,特别是在产品外形和减轻重量很重要的情况下。可穿戴消费电子产品是柔性 PCB 最明显的应用领域之一;健康监测 [1-3]、保形室内照明 [4] 和便携式显示器 [1, 5] 都因柔性 PCB 技术而得到了显著发展,而柔性连接器几十年来已在笔记本电脑和手机中无处不在 [6, 7]。此外,柔性 PCB 是一系列潜在颠覆性新技术不可或缺的一部分,包括食品包装监控 [8]、增强现实 [9-11] 和基于人造皮肤的生物识别传感器 [3]。
航天器窗户技术 新的合作机会 参考编号:80JSC021SWT 潜在商业应用:飞机、汽车、建筑、潜水器、水族馆、 关键词:玻璃窗、塑料窗、丙烯酸窗、聚碳酸酯窗、结构窗、光学、窗玻璃、飞机窗户、航天器窗户、挡风玻璃 目的:NASA JSC 寻求与合作伙伴合作,推进与航天器窗户相关的技术,目标是使窗户结构更合理、更轻、更便宜,同时仍保持所需的光学特性。在航天飞机和国际空间站等使人类能够突破探索边界的航天器上,窗户通常由多层玻璃制成。但是,玻璃并不是用于航天器窗户的理想材料。它是一种较差的结构材料。当对玻璃施加负载时,玻璃会随着时间的推移而失去强度,如果微流星体损坏玻璃,强度会立即大幅降低。美国宇航局最新的载人太空飞行器猎户座的内部玻璃由丙烯酸塑料制成。这种材料变化提高了窗户的结构完整性。在追求这些类型的窗户技术进步的过程中,美国宇航局和潜在合作伙伴将为航天器开发新的和改进的窗户功能,这也将为多个行业的地面应用提供更多选择。技术:技术目标包括但不限于:改进涂层以阻挡紫外线,防止因吸收紫外线而导致的降解,降低可燃性,防尘,适应电致变色变暗能力,减轻重量,提高抗冲击性,并确定自修复窗户和窗户作为兼职显示屏的可行性。计划进行研究以确定仅由轻质塑料制成的多窗格窗户的可行性,其中包括长时间的负载测试,以确保不会发生明显的“蠕变”。研发状态:美国宇航局已经对航天器窗户玻璃进行了广泛的开发和测试。这些历史数据(包括飞行数据)涵盖了窗格的光学性能、强度和材料特性,为实现上述技术目标提供了极好的基础。 NASA 配备了众多设施,将用于验证这些技术。光学试验台将验证新功能不会阻挡或扭曲
飞机设计是一项迷人而又充满挑战性的任务。通常,需要实现相互对立的目标,并满足法规通常规定的限制。然而,主要的设计目标一直是安全性和可靠性,尽管在过去的几十年里,生态和经济问题补充了前者。因此,飞机设计始终是仔细考虑所有这些方面的结果,因此不仅仅是技术上的妥协。自 20 世纪初以来,飞机的基本几何布局没有太大变化;尽管如此,其技术复杂性发生了巨大变化。一个例子是轻量化设计,通过引入高性能铝合金和复合材料,已经利用了新的减轻重量的可能性。另一个例子是航空电子和电气系统设计的进步,导致飞机越来越“电动化”。所有这些发展都需要在早期开发阶段判断它们对飞机设计和性能的影响,以避免经济误判。这就是概念和初步飞机设计发挥作用的地方(参见第 2 章)。除了亚音速和跨音速运输外,超音速旅行的梦想也吸引了许多人和机构。然而,除了军用飞机外,只有协和式飞机和 TU-144 被引入客机市场。这两架飞机都只在极少数航线上使用过,而且它们的商业成功遥不可及,这是一个很好的例子,表明技术上可行的并不总是经济上合理的。尽管如此,“超音速”的热情仍然盛行,研究工作和资金仍在投入到这个主题上。然而,焦点从客机转移到超音速公务机 (SSBJ) 和高净值个人的利基市场。由于声望、便利、舒适和旅行时间的减少,它对高管和 VIP 尤其有吸引力。“这个列表并不完整;然而,这些参数可以提高企业生产力,从而证明超音速商务旅行是合理的。音爆、起飞和降落时的噪音、高油耗以及由此产生的排放被视为超音速运行的关键问题”(Schuermann 等人,2015 年)。发动机技术和机身设计的进步有助于找到与超音速飞行相关的生态和技术挑战的充分答案。由于这些问题与飞机的大小密切相关,因此可以将公务机大小的飞机视为进入实际超音速飞行的良好起点。“最近的市场研究表明,大量高级乘客愿意改乘超音速服务”(Schuermann 等人,2015 年)。事实证明,公务机大小的超音速飞机似乎找到了
近年来,由于对更可持续的能源和运输的需求越来越强劲,电动汽车市场和行业一直在迅速发展。随着这种更大的需求,出现了新的挑战,例如自主性和效率。体重在这两个参数中起着重要作用,因此减轻重量对于电动汽车的性能至关重要。另一方面,复合材料,尤其是碳纤维增强聚合物(CFRP),提供了经典金属材料的低重量替代品。在车辆中,可以通过复合材料改善机械性能的组件,同时减小结构重量,这是电池容器。在此组件中使用复合材料的使用变得越来越普遍,无论是在高性能的汽车中,例如机动运动还是常规运输车辆。复合材料不仅具有较高的电阻/权重关系,而且还提供了其他优势,例如低电导率和更大的刚性。他们也有可能制作更复杂的形式。与高性能运动运动一样,复合材料可用于工程相关的环境中,例如促进学生融合的竞赛。Formula Student是一项全球竞赛,在该竞争中,学生面临挑战和制造公式式跑步汽车的挑战。这些汽车可能具有燃烧,电动机或混合运动组。电动汽车的关键组成部分是其电池,因此是其容器,可以保证结构完整性和安全性。该容器由许多铝制团队制造。但是,许多团队选择在电动汽车市场之后使用复合材料。在本文中,提出了CFRP容器的概念来提高组件性能和安全性。经过一些设计迭代后,通过有限元素模拟研究了CFRP电池盒的性能。这样做不仅是为了了解新结构的行为,而且是为了确保它符合汽车将参与的比赛规定。还使用了复合材料的经典理论对分析模型进行了综述,这导致了某些模型与实验论文的比较。使用Altair HyperMesh进行临界加载案例进行层优化模拟,以减轻所选区域的重量或增加电阻。 最后,使用类似于累加器盒的材料进行实验测试,以创建一个工作流程,以在电池盒中使用的材料测试中使用。 关键字:复合材料,电动汽车,有限元素分析,学生公式,电池讲故事的人,模拟,弯曲测试。层优化模拟,以减轻所选区域的重量或增加电阻。最后,使用类似于累加器盒的材料进行实验测试,以创建一个工作流程,以在电池盒中使用的材料测试中使用。关键字:复合材料,电动汽车,有限元素分析,学生公式,电池讲故事的人,模拟,弯曲测试。
• CU 博士论文工作 2018 年 8 月至今 直驱发电机比齿轮发电机具有更高的可靠性;但是,它们通常非常大(10MW 涡轮机重达 220 吨)。其中大部分质量是结构支撑材料。通过实施适合增材制造的拓扑优化和晶格结构,发电机重量可减轻多达 50%。此外,通过集成先进的冷却方法,可以显着提高功率密度,从而进一步减轻重量并降低机器成本。我制造了一个定制的 3 kW 发电机来测试各种冷却技术所能实现的最大电流密度,并使用这些数据来支持高功率密度 12 MW 直驱风力涡轮发电机的分析设计。我还研究了增材制造的空气质量和糊料挤出工艺的建模。 • HP Inc 金属 3D 打印实习生 2019 年 5 月 - 2019 年 8 月 在 HP Inc 的第二次实习中,我致力于开发用于现场打印机监控的方法和指标,以改善分层缺陷和各向同性。粉末粘合剂喷射本质上是一个分层过程,这会导致烧结缺陷。我创建了一个 MATLAB 脚本来自动分析烧结横截面以确定定量打印指标 • HP Inc 金属 3D 打印实习生 2018 年 5 月 - 2018 年 8 月 在 HP Inc 工作期间,我开发了一种高速成像装置,以更好地了解 3D 打印过程。我研究了粉末粘合剂喷射应用中的粉末-粘合剂相互作用。金属打印提出了聚合物粉末-粘合剂喷射中未曾见过的独特挑战;因此,我的工作是为了更好地理解这些独特的挑战。 • RIT 硕士论文工作 2016 年 8 月 - 2018 年 5 月 在我的硕士论文中,我使用金属增材制造的微结构来增强池沸腾传热。RIT 与 Vader Systems 合作,获得了第一台液体磁喷射 3D 打印机(现为 Xerox ElemX)。该打印机使用线材将熔融的铝液滴一滴地喷射到构建平台上,以产生高沉积速率和高分辨率。在我的项目中,我使用这项技术构建了新颖的微结构,以利用增材制造实现的气泡设计将池沸腾传热提高多达 7 倍•微流体高级设计项目(HP 赞助)2017 年 8 月 - 2018 年 5 月通过 RIT 进行的多学科项目,我们小组在惠普公司的支持下提出了自己的项目。我们开发了一种方法来创建一种低成本的微流体装置以评估层流的混合。目前,很难混合层流状态(例如生物医学应用所需的层流状态)。通过在 FAB 中的硅晶片上创建集成电阻加热器,并与低成本封装方法接口实现密封,可以创建一个流动混合装置。混合机制来自于实现类似于 HP 专利热喷墨技术的局部亚稳态沸腾。该项目是一个正在进行的研究项目,旨在确定其可行性和影响混合的参数。• NREL 科学本科实验室实习生 2017 年 5 月 - 2017 年 8 月在 NREL 工作期间,我使用有限元分析 (ANSYS) 来确定减轻大型直驱发电机重量的潜力。这可以减少 24% 的质量,同时还可以将径向偏转减少 60%。最佳的添加方法是粉末粘合剂喷射,并使用多喷射打印创建实验模型以证明设计的可打印性。我们的研究产生了两份会议论文集和两项 ASME 论文奖。• 在 IBM 与高级热能效率实验室合作 2016 年 5 月 - 2016 年 8 月在 IBM,我的工作是密封一个实验性的两相测试回路,该回路之前出现泄漏,已停运一年半。这涉及使用与 Matlab 脚本交互的 LabVIEW 数据采集来确定 Swagelok 系统是否长时间保持真空。此外,我与其他实习生和热工程师合作设计了一张流量卡,以模拟主机中的实际压降。然后,这张流量卡被 3D 打印出来并进行测试,以查看它是否对齐
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.
特斯拉在其型号和X型号中很大程度上依赖于Panasonic的18650锂离子电池,利用圆柱电池可提供增强的冷却能力。此外,他们还引入了更高级的电池类型,例如2170和4680个电池,它们具有提高的性能和效率。这些进步在支持特斯拉的电动汽车,尤其是4680牢房中发挥着关键作用,该电动汽车于2020年推出,该电动汽车具有提高的能量密度,更低的成本和提高的生产效率。这项创新与特斯拉的目标保持一致,即以降低的价格实现更高的性能和批量生产电池。通过完善其电池电池技术,特斯拉试图提高车辆范围,同时最大程度地减少费用。对于那些对特斯拉车辆背后的技术感兴趣的人,了解电池电池的各种类型和模型至关重要。此知识为对这些电池电池的影响如何影响特斯拉的整体性能,可持续性工作以及EV技术的未来创新奠定了基础。特斯拉的新电池电池的直径为46mm,高度为80mm,旨在提高能量密度,同时降低生产复杂性。这些较大的单元于2020年宣布,旨在提高车辆性能并降低制造成本。该公司声称他们将提高设计灵活性和生产效率。相比之下,特斯拉汽车中使用的18650和2170电池具有不同的尺寸:18650的18mm x 65mm和21mm x 70mm的2170毫米。这些电池之间的关键差异在于尺寸,容量和能量输出。根据特斯拉的文档,这些尺寸满足了能量密度和空间优化需求的不同。2170电池提供更好的能量密度,在3型和Y型Y型等车辆中,每次充电范围更长。例如,2170的能量比18650的能量高约5-10%,从而导致电动汽车的效率和范围更高。行业专家认为,这种转变可能会降低成本并增加消费者对电动汽车的可访问性。特斯拉对NCA(镍铜铝)和LFP(铁磷酸锂)电池的使用在其车辆中具有不同的目的,提供了不同的性能特征。公司投资于新技术和制造技术,能源顾问的建议包括探索固态电池作为将来的替代品。NCA和LFP电池具有不同的特征。NCA电池以高能量密度脱颖而出,达到250 WH/kg左右,这使特斯拉的车辆可以单一充电行驶更长的距离。它们的出色功率性能使它们适合快速加速和速度。另一方面,LFP电池由于其出色的热稳定性和在较高温度下有效运行的能力而优先考虑安全性和寿命。他们还提供3500多个电荷周期的寿命,从而降低了替代成本和环境影响。LFP电池的成本效益使特斯拉能够在更实惠的型号和型号Y.4680电池的进步显示了电池技术的重大进展。此外,LFP电池不含钴,与负面的采矿实践和环境降解有关,从长远来看,它们是更可持续的选择。特斯拉的最新电池型号4680引入了一些创新,以提高性能和效率。这些包括较大的单元大小,从而增加了储能容量; Tabless Design,通过删除内部标签并降低内部阻力来简化制造;通过新的化学反应改善了能量密度,从而导致电池较轻和更有效的能源使用;由于优化的制造工艺而降低了生产成本;并增强了热管理以提高安全性。较大的电池尺寸增加了整体能量输出,并且可以单一电荷导致电动汽车的更长范围。曲目设计改善了电流的流动,从而增加了16%的范围和增强的安全性。更高的能量密度可实现更有效的能源使用和更轻的电池。特斯拉通过将不同的电池类型整合到各种车辆模型中,展示了他们对创新和环境责任的承诺,而专注于优化性能,成本和可持续性。通过利用这些技术,特斯拉可以迎合各种细分市场,同时解决与电动汽车范围和可持续性有关的问题。特斯拉的先进电池技术专注于优化的制造工艺,包括自动化和材料采购。这种方法可以将电池成本降低多达50%,从而使电动汽车更负担得起的消费者。该公司的4680电池具有增强的热管理,可保持性能和安全性最佳的工作温度。正如M. Lindholm的2022年研究中所报道的那样,这项创新可以延长电池寿命并最大程度地减少过热风险。4680电池电池的设计还增强了车辆的结构完整性,集成到框架中以节省重量并提高安全性。特斯拉的方法有可能重新考虑车辆架构,优先考虑安全性而不会损害性能。这将4680电池定位为EV技术的重大进步,促进采用的增加并增强驾驶体验。特斯拉选择锂离子电池电池会影响车辆性能,为更长的范围和快速加速提供高能量密度。有效的电池管理系统优化了电池性能和寿命,确保安全的操作条件和有效的充电时间。创新的设计,例如圆柱结构,提供了结构支持和有效的散热,对于在苛刻条件下保持性能至关重要。总而言之,特斯拉对电池电池的选择会通过能量密度,放电速率,电池管理和创新设计影响车辆性能,从而有助于改善范围,快速加速和增强的驾驶体验。NCA电池比NCM电池具有更高的能量密度,使特斯拉车辆单一充电更远。根据ICCT的研究,NCA电池可提供比类似NCM电池多高达10%的范围。这意味着配备了NCA电池的车辆可以达到更长的范围并减少充电时间。NCA电池还表现出改善的热稳定性,从而降低了过热和热失控事件的风险。电池安全计划发现,与在类似条件下的NCM电池相比,NCA电池的热失控事件发生率较低。这种增强的安全性概况有助于更好的消费者信任。此外,NCA电池的循环寿命比NCM电池更长,在发生重大降解之前,会转化为更多的充电和放电周期。根据Argonne国家实验室的说法,NCA电池可以持续约300个循环,而不是NCM电池。这意味着带有NCA电池的特斯拉车需要更少的更换,从而降低了车主的长期成本。此外,NCA电池往往比NCM电池轻,从而提高性能和能源效率。减轻车辆重量通常会导致提高加速度和敏捷性。但是,由于其组成所需的钴和铝的成本高,有时使用NCA化学的使用可能更昂贵。然而,基准矿物情报的一项研究发现,尽管NCM电池可能会降低前期成本,但NCA电池由于其寿命和效率而节省了汽车寿命的资金。总而言之,NCA电池为特斯拉车提供了明显的好处,包括更高的能量密度,改善的热稳定性,增强的寿命和减轻重量。虽然在成本和特定用途方案方面进行了权衡,但NCA电池的优势使它们成为电动汽车的吸引人选择。LFP Tech对特斯拉的影响混合了一袋 - 与其他电池相比,它降低了范围,但使其更安全,更实惠。在安全性方面,LFP电池较不容易过热,并且具有较低的热失控风险,这可以节省特斯拉的诉讼。此外,他们收取的速度更快而不会损坏,从而使EV所有权更加方便。LFP技术也可以提高寿命 - 这些电池在失去容量之前可以持续2000多个周期,而传统的锂离子液在大约1000个周期后开始降解。但是,这是以减少范围的成本-Tesla的LFP型号通常提供的能量密度低于其同行。但从好的方面来说,LFP Tech的生产价格更便宜,因为它使用了更实惠的原材料,这可能会使电动汽车更容易被消费者使用。这些材料的丰度和可持续性还确保了特斯拉的稳定供应链。特斯拉在其模型中利用不同的电池电池,包括来自各种供应商的圆柱形和棱镜细胞。公司的电池选择会影响性能,成本效率和生产可扩展性。特斯拉模型S和X模型使用18650圆柱形细胞,在能量密度和重量之间提供平衡,这可以使远距离旅行由于其容量而实现。相反,特斯拉模型3和Y模型采用2170个圆柱细胞,从而在18650年的细胞中提供了提高的能量密度和效率。此升级提高了能源输出,从而提高了性能和范围。Tesla Cybertruck将使用4680个细胞,旨在提高生产效率和降低成本。这些较大的细胞可能会显着降低每公斤小时的成本,从而可以更好地定价。第二代特斯拉跑车还将结合4680个电池,旨在优化性能并迅速加速车辆高速。Tesla半岛使用2170个圆柱形细胞,旨在满足重量运输的能源需求,并确保长期用于商业用途。总而言之,特斯拉的电池类型反映了性能,技术进步和生产效率的平衡。未来的模型有望在电池技术方面进一步进步,可以重新定义电动汽车功能。特斯拉的电池电池的进步,尤其是2170格式,提供了提高的能量密度,从而增强了范围和性能。这项新技术已集成到Model S,X和最近的模型中。尽管这些车辆之间的电池布局有重叠,但容量由于尺寸和预期使用而有所不同。例如,Model 3具有紧凑的设计,可容纳较小的包装,而模型Y可容纳额外的重量,较大容量范围为82 kWh。这两种设计都结合了有效的空间布置,但符合独特的性能目标。特斯拉在其Model 3和模型Y电池配置中的重点是高能密度细胞。具体来说,2170格式可实现更好的热管理,使其适用于尖端的电动汽车。此外,最近的更新使特斯拉根据车辆要求采用了不同的化学成分。预计特斯拉电池电池技术的未来发展将带来效率,可持续性和制造过程的显着提高。关键的进步包括能量密度提高,寿命提高,可持续性提高,生产成本降低,固态电池的开发,回收创新以及供应链的垂直整合。这些增强功能将使电动汽车能够在不增加重量,延长车辆寿命,降低环境影响,降低电池制造成本的情况下行驶更长的距离,并有可能使用固态电池彻底改变该行业。有效的回收系统还可以收回高达EV电池中使用的锂,钴和镍的95%。特斯拉的电池技术进步正在通过提高性能,可持续性和负担能力来改变电动汽车市场。该公司专注于提高电池效率,能量密度和生产可伸缩性,导致车辆可以单次充电,从而解决范围焦虑症的问题。此外,特斯拉在电池制造过程中的创新降低了生产成本,使公司能够提供更具竞争力的车辆。这种转变鼓励其他汽车制造商投资类似的技术,从而推动汽车行业的更广泛的电气化趋势。此外,特斯拉在电池研究中的投资导致了新的电池化学成分的发展,例如镍,磷酸锂(LFP)以及其他改善性能和安全性的材料。这些进步在延长电池寿命的同时增强了驾驶体验,使电动汽车对消费者更具吸引力。总体而言,特斯拉的电池技术改进是推动电动汽车的效率,负担能力和性能提高。特斯拉已经进化了其电池电池技术,以优化电动汽车。该公司始于2170型圆柱形细胞,最初是由松下在内华达州的Gigafactory 1生产的。后来,LG Chem的LG Energy溶液在中国为特斯拉的吉加上海植物产生相似细胞而加入了这种类型。最近,最大的圆柱细胞格式,4680型,进入市场,物理上的五倍,是其前身的五倍,可以进一步优化和新技术。然而,这种增加构成了生产挑战,促使特斯拉开始在加利福尼亚和德克萨斯州的内部开发和生产,同时鼓励像松下这样的供应商加速他们的努力。除了圆柱形细胞外,特斯拉还使用CATL提供的棱镜LFP电池,截至Q1 2022年,所有Tesla汽车的几乎占一半。这些LFP电池专为入门级型号和储能系统而设计,提供了一种具有成本效益的选项。特斯拉的牵引力电池是锂离子,但它们在阴极化学方面有所不同,具有三种主要类型:NCA,NCM和LFP。高能密度类型(例如NCA和NCM)用于远程特斯拉汽车,而较便宜的LFP适用于入门级模型和储能系统。在其2021年的影响报告中,特斯拉概述了使阴极战略多样化的计划,包括增加镍含量和减少NCA和NCM电池中的钴。这将降低成本并提高能量密度,从而导致电动汽车的范围增加。特斯拉计划在由于电池生产增长而增加的钴需求中,特斯拉的阴极战略将继续发展,该公司旨在推进低成本和高性能电池的多元化方法,这将使阴极战略多样化。此举旨在解决车辆和储能产品的各个市场领域,同时根据原材料的可用性和定价提供未来的灵活性。随着电池生产的增长,特斯拉的钴需求也随之增长,由于预测电池生产的预测超过了每个单元的总体钴降低速率,因此预计将增加。但是,必须注意,阴极并不是电池的唯一元素,并且阳极和电解质材料的持续改进。近年来,特斯拉的主要电池供应商从松下转变为LG Energy溶液和CATL的组合。该公司还开始了自己的电池生产,重点是具有未公开化学的高能密集的4680型细胞。供应商和细胞类型的多元化反映了不断发展的电池格局。Currently, several key players contribute to Tesla's battery supply chain: - Panasonic: 1865-type NCA cells primarily used in Model S/Model X - LG Energy Solution: 2170-type NCM cells mainly used in Model 3/Model Y production in China and the US - CATL: Prismatic LFP cells widely used in entry-level Model 3/Model Y globally - Tesla: The company's California-based facility produces 4680型细胞具有未公开的化学物质,主要用于德克萨斯州制造的Y