先进反应堆通常被称为“第四代”核技术,现有的商用反应堆属于“第三代”,而最近建造的反应堆则属于“第三代+”。先进反应堆的主要类别包括先进水冷反应堆,这种反应堆在安全性、效率和其他方面都比现有的商用反应堆有所改进;气冷反应堆,可以使用石墨作为中子减速剂或不使用减速剂;液态金属冷却反应堆,使用液态钠或其他金属冷却,不使用减速剂;熔盐反应堆,使用液体燃料;聚变反应堆,通过轻原子核的结合而不是铀等重核的分裂(裂变)来释放能量。这些概念中的大多数都已得到研究,但很少有概念发展到商业规模的示范,而美国的此类示范已是几十年前的事了。
TCR 堆芯将由传统制造的氮化铀涂层燃料颗粒 (TRISO) 和先进的碳化硅结构组成。如果碳化硅可以提供一些中子减速,额外的减速将有助于减少达到临界状态所需的燃料质量。已经研究了几种减速剂材料,发现钇氢化物是 TCR 燃料的极佳减速剂材料。钇氢化物体积分数约为 40% 将使堆芯设计能够舒适地进行低减速,同时大幅减少燃料需求。计算是在简单的几何形状下进行的,在更现实的堆芯设计中,钇氢化物的好处肯定会减少。尽管如此,人们相信本文描述的趋势将继续适用。致谢
在载人火星任务的背景下,描述了裂变碎片火箭发动机概念的电离辐射特性。这种推进系统利用悬浮在气凝胶基质中的微米级裂变燃料颗粒,可以在高功率密度(> kW/kg)下实现非常高的比冲量(> 10 6 s)。裂变芯位于电磁铁孔内,并位于外部中子减速剂材料内。低密度气凝胶可以对燃料颗粒进行辐射冷却,同时最大限度地减少与裂变碎片的碰撞损失,与以前的概念相比,可以更有效地利用裂变燃料产生推力。本文介绍了来自外部(例如银河宇宙射线)和内部(反应堆)源的宇航员机组人员的稳态电离辐射当量剂量的估计值。航天器设计包括一个离心概念,其中过境居住舱围绕航天器的重心旋转,为机组人员提供人工重力,并与核心分离。我们发现,裂变碎片推进系统与离心相结合可以缩短过境时间,降低等效辐射剂量,并降低长期暴露于微重力环境的风险。这种高比重脉冲推进系统将使其他载人快速过境、高 delta-V 行星际任务成为可能,其有效载荷质量分数远高于替代推进结构(化学和太阳能电力)。
