时间遇到的Kolmogorov复杂性的研究与37电路复杂性的研究紧密相关。的确,我们在本文中最仔细地研究了38 kt的措施,最初是定义的,以便在39个对最小电路大小问题(MCSP)的研究中利用Kolmogorov复杂性的框架[4]。如果f是一个长度为40 2 K代表k -ary boolean函数的真实表的串,则kt(f)与最小电路计算f的大小相关。Thus the problem of computing KT 42 complexity (denoted MKTP ) was initially viewed as a more-or-less equivalent encoding of 43 MCSP , and it is still the case that all theorems that have been proved about the complexity 44 of MCSP hold also for MKTP (such as those in [5,9,10,17,21–24,30,31,33,35]).45近年来,MKTP证明了一些硬度结果,这些结果尚不为MCSP [7,8]所知。我们认为,这些结果可以作为MCSP可能是正确的指示47。目前的工作给出了MKTP的显着改善的48个硬度结果。49可降低性和完整性是复杂性武器库中最有效的工具50理论提供了棘手的证据。但是,尚不清楚MCSP还是MKTP 51是NP -Complete;两者都不能证明是np -complete的,甚至对于ZPP而言,也无法证明52岁以下通常≤pm的降低,而没有第一个表明Exp̸= Zpp,这是一个长期的开放53个问题[17,31]。54到目前为止,MCSP和MKTP的最强硬度结果是55,在BPP降低下,这两者都很难[5]。szk是具有统计零知识交互式证明的问题56类,并且包含了57个密码学家的许多问题。的确,如果MCSP(或MKTP)以P/Poly为单位,则没有58个密码编码的单向函数[26]。59我们的主要结果涉及通过将60个查询数量从多项式 - 多种多样的数量减少到一个,从而改善MKTP的硬度结果。在随后的段落中,我们解释了61我们实现这一目标的意义。沿途,我们还获得了一个新的电路,下部为MKTP的62限制;该电路下限是否也适用于MCSP,仍然未知。63 SZK不含NP中包含;在建立这样的遏制之前,64没有希望将[5]减少到≤pm的减少。,但是65我们在本文中接近。niszk是SZK的“非相互作用”子类;当且仅当SZK做到时,它包含66个棘手的问题[18]。我们表明,在≤p / poly m降低下,Niszk 67很难MKTP。(因此,不像[5]中那样问许多查询,而是单个查询68 sufces。1)我们的证明还表明,在BPP减少的情况下,Niszk很难,仅要求一个查询一个查询。与[18]结合使用,这表明MKTP在70个非自适应BPP降低以下的SZK很难,对[5]产生了适度的改进;这有含义71
应对这些挑战,我们提出了驾驶概念,以此作为实现良好驾驶行为的框架。驾驶理由评估驾驶行为在道路使用者之间存在的相互期望之间的一致性中。利用现有文献,我们首先要区分(i)经验期望(即,反映了“遵循某种行为的信念”,借鉴了过去的经验)(Bicchieri,2006年); (ii)规范性期望(即,基于社会同意的原则,反映了“应该遵循某种行为的信念”)(Bicchieri,2006年)。,由于社会期望自然会随着时间的流逝而自然变化,因此我们引入了第三种期望,促进期望,表示可以展示的行为,以促进运输生态系统的持续改进。我们将驾驶员置于社会规范期望的空间内,并指出现有的与一些经验和促进期望的重叠,这受到技术和物理上可行性的限制。
NSUC1610 是通过反电动势的大小来进行堵转检测,在马达相位未通电期间,可以检测到 BEMF 电压。但这 不包括全步进模式,因为两个相位始终通电。以下假设在微步进模式下检测失速,BEMF 电压与电机转速成 正比,这样可以判断电机是否运行。由于只有在一相未通电的情况下才能进行测量,因此对 BEMF 电压的观 察非常有限。对于理想的电机,在没有任何负载和损耗的情况下,转子将随着定子磁场持续旋转,并且在相电 流为零时,可以看到 BEMF 电压的峰值。对于实际电机和外加负载,转子将始终滞后于定子磁场。此负载相关 相位滞后将导致固定测量点处 BEMF 电压的负载相关变化。在零相位滞后的情况下,可以测量 BEMF 电压峰 值,并且只能看到反电势与速度的相关性。在与负载变化的情况下,反电势会产生相位滞后,BEMF 电压将从 峰值将出现偏移,当这个电压大于或者小于一个阈值时,这就标志着检测到失步点,电机运动将停止。BEMF 电压测量仅在零电流阶跃期间启用。在零电流阶跃结束时,采样和测量最后一次 BEMF 电压值。这可确保线 圈电流达到零,且 BEMF 电压实际可见。根据电机参数、速度和阶跃模式,零阶跃可能会变短,并且无法获得 明显的 BEMF 电压。此时则无法检测失速。失速检测仅在匀速运动期间进行,在加速或减速期间,BEMF 电压 可能非常低,则不会启用失速检测。具体电流波形如图 2.5 所示:
1.充电模式 FM5012D 用线性方式对电池进行涓流 / 恒流 / 恒压三段式充电。当电池电压低于 V TRKL 时进行涓流充 电;当电池电压高于 V TRKL 时进行恒流充电;当电池电压接近 V BAT-REG 时进行恒压充电,此时充电电流 开始逐渐减小,当电流减小到 I FULL 时,判断电池已经充饱,芯片终止充电,待电池电压降低到 V RECHG 后进行再次充电 (Recharge) 。 2.充电软启动功能 当开始给电池充电时,芯片会控制充电电流逐渐增大到设定值,避免了瞬间大电流冲击引起的各种 问题。 3.充电电流设定 充电电流由内部电路设定为恒流 600 mA, 涓流充电为 60mA, I FULL 为 90 mA 可编程设置充饱电压为 500 mA, 涓流充电为 50mA , I FULL 为 75 mA 当输入供电不足或芯片温度过高时, I IN-LIM 会下降。 4.充饱电压设定 FM5012D 芯片默认充饱电压值为 4.20V 可编程设置充饱电压值为 4.35V 5.输入过压保护 输入电压过高,超过 V IN-OVP 时,芯片会控制关闭充电和升压输出,防止芯片和负载因为过压而损 坏,输入电压正常后充电恢复,风扇驱动输出 FAN 不恢复。 6.充电限流保护 当芯片 VIN 端口电压低于 4.7V 时,芯片进入 VIN 限流状态,充电电流逐渐减小,直至到零。 SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
1. 充电过程 IU5365E 采用完整的涓流充电、恒流充电、过充电、浮充 电四个过程进行充电。当电池电压小于涓流点时,系统以 I *20% 充电电流充电;当电池的电压大于涓流点时,系 C C 统以 I 充电电流充电;当电池电压达到所设定的过充电电 CC 压值 , 充电电流逐渐减小,当电流减小到所设定的过充电 结束电流值时,过充电结束,系统进入到浮充电过程 , 浮 充电电压为过充电电压V 的 90% 。 OC 浮充电模式的存在可以弥补由于电池自放电或者负载耗电 所导致的电池能量损失。在浮充电状态,如果输入电源和 电池仍然连接在充电器上,电池电压仍然逐渐下降到所设 置的过充电电压V 的 85% 时,系统会重新恢复充电状态。 OC
当生活失去控制时 生活失去控制的原因有很多。无论是由于压力、健康问题、人际关系问题、国家或世界危机、工作冲突还是某种悲剧,练习接受都会有所帮助。接受并不等同于放弃或被动。尽管接受有些事情超出了你的控制范围,但你仍可以继续前进。当生活失去控制时,以下一些步骤可能会有所帮助:
致谢/谢意 首先,我要向我的论文导师表示最诚挚的谢意:在本项目中发挥了基础作用的 Martin Maiden 教授和 John Charles Smith 先生,以及 2017 年退休后接替 JC 的 Ros Temple 博士,感谢他们过去六年来的重要指导、急需的耐心和不懈的善意。 我要感谢牛津大学克拉伦登基金会、加拿大社会科学和人文研究委员会、玛格丽特夫人霍尔学院、加拿大-英国基金会以及牛津大学语言学、语言文学和语音学学院慷慨的经济支持,使我能够完成博士学业。 我还要感谢我的 DPhil 确认考官 Deborah Cameron 教授对该项目早期版本的反馈;Sam Wolfe 博士对第 2 章发布版本的评论;Wolfgang De Melo 教授的精神和行政支持;中央大学研究伦理委员会团队协助我完成实地考察;以及玛格丽特夫人霍尔的优秀员工,他们在本研究项目的每个阶段以及我在牛津期间都给予了极大的支持。我还要感谢国际语言学家团体:Gillian Sankoff,她代表我使用她的蒙特利尔法语语料库进行统计分析,并友好地与我分享她的研究结果以供本项目使用;Mathieu Avanzi 和 André Thibault,他们慷慨地与我分享了他们的 Français d'ici 辅助数据;Anne-José Villeneuve,她在本研究的初始阶段给予了指导;Raymond Mougeon,她为我提供了如何按主题组织访谈的各种建议,以便最好地引出辅助替换数据;最后,渥太华大学社会语言学实验室的 Shana Poplack、Nathalie Dion 和 Basile Roussel,感谢他们欢迎我并分享他们对辅助替换的真知灼见。在技术方面,我还要感谢约翰·科尔曼 (John Coleman) 和牛津大学语音实验室为我在蒙特利尔的实地考察提供录音设备;感谢我亲爱的朋友泽维尔·巴赫博士 (Dr. Xavier Bach) 向我展示如何使用转录软件 ELAN;感谢丹尼尔·埃兹拉·约翰逊 (Daniel Ezra Johnson) 在该项目的统计分析阶段不断为我提供 (Shiny) Rbrul 的实际帮助。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。