1。 div>引言和主要结果。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>1 2。 div>还原为参数范围。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 3。 div>。 div>。 div>。 div>热力学极限中的同质气体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 3.1。存在热力学极限。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 3.2。低密度制度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 4 4。局部密度近似。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 4.1。能量上限。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 4.2。 div>能量下限。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20 4.3。 div>深度收敛。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23附录A.投影仪OTO fi nite-dunnenensal最低水平。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25附录B. GP能量与LLL能量的收敛。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26参考。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 div>
和进一步经历了同性恋,导致多价相互作用和LLP的诱导。VP16被募集到CMV最小启动子提供的转录起始位点,并诱导报告基因表达。(b)调整转化因子冷凝物的材料特性。要修改凝结物材料特性,采用了两种策略:首先,通过将CRY2换成Cry2 Olig,从而增加了相互作用的价值,而Cry2 Olig构成了高阶寡聚物;其次,通过共转染编码融合到麦克里(可视化)和fus n和nLS的cry2 olig的结构来提高价值和浓度。与CRY2-EYFP-FUS N -VP16或CREY2 OLIG -EYFP-FUS N -VP16构建体(黄色和绿色数据点)共转染了编码CIBN-TER和基于TETO 4的SEAP报告基因。可选地,添加了编码Cry2 Olig -MCH -MCH -FUS n -nls的构造(以2:1的质粒量比为2:1相对于含VP16的构建体,红色和黑色数据点)。在进行FRAP分析之前,将细胞在黑暗中培养32小时。蓝光照明10分钟后(2.5 µmol m -²S-1)开始。 图像在液滴漂白之前直接显示出反应性核。比例尺= 5 µm。 图显示了根据n≥7凝结物回收曲线的非线性拟合计算出的移动部分的平均值和单个值(请参见右图)。 使用学生的t.test(*=p≤0.05; **** =p≤0.0001)进行成对比较。。图像在液滴漂白之前直接显示出反应性核。比例尺= 5 µm。图显示了根据n≥7凝结物回收曲线的非线性拟合计算出的移动部分的平均值和单个值(请参见右图)。使用学生的t.test(*=p≤0.05; **** =p≤0.0001)进行成对比较。
生物分子冷凝物被认为会产生调节特定生化活性的亚细胞微环境。广泛的体外工作有助于将冷凝水的形成与广泛的细胞过程联系起来,包括基因表达,核转运,信号传导和应激反应。但是,测试凝结物形成与细胞功能之间的关系更具挑战性。特别是,冷凝水的细胞功能取决于分子相互作用的性质,凝结物形成是一个主要的杰出问题。在这里,我们回顾了细胞中最近的遗传互补实验的结果,并强调了遗传互补如何为生物分子冷凝物的细胞功能和功能特异性提供重要的见解。与人类遗传疾病的观察结果结合在一起,这些实验表明,细胞蛋白内的多种凝结物促进区域赋予不同的冷凝水组成,生物物理特性和功能。
4硕士学位的选修模块I)模块19 4..1每年提供的交叉区域模块。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 19 4.2天体物理学和宇宙学。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 27 4.3核心和基本部分物理。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 4.4凝结物的物理学。 。4硕士学位的选修模块I)模块19 4..1每年提供的交叉区域模块。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 4.2天体物理学和宇宙学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 4.3核心和基本部分物理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 4.4凝结物的物理学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。66 4.5光学,激光和原子物理学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 4.6加速器,等离子体和应用物理。。。。。。。。。。。。。。。。。。。。。。。。。88 4.7生物物理学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。105 4.8神经科学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。114 4.9来自其他课程(导入模块)的相应强制强制模块。。。。。。。。。118
我们在原子旋转1玻色的凝结物中产生自旋挤压基态,该凝结物在量子临界点附近调节,该量子使用一种新型的非绝热技术将相互作用集合的不同自旋阶段分开。与典型的非平衡方法相反,用于通过量子相变的淬灭原子挤压状态,挤压的基态是及时的,具有恒定的正交挤压角。挤压的基态有6-8 dB的挤压和恒定的挤压角。测量挤压基态的长期演变,并显示出2 s的挤压程度的逐渐下降,这是由于原子密度损失而通过缓慢调整汉密尔顿的良好模型。有趣的是,尽管损失了75%的原子,但对逐渐减小的建模不需要额外的自旋脱碳模型。
许多生物分子冷凝物被认为是通过液体 - 液相分离(LLP)形成的多价大酚 -对于那些通过这种机制形成的人来说,我们的理解受益于关键组成部分和活动的生化重新定义。迄今为止,基于RNA的冷凝物的重组主要是基于相对简单的分子集合。然而,蛋白质组学和测序数据表明,基于天然RNA的浓度富含数百至数千种不同的分量,遗传数据表明多种相互作用可以在不同程度上有助于凝结物的形成。从这个角度来看,我们描述了通过不同水平的生化重构建立基于RNA的冷凝水的最新进展,以此来弥合简单的体外重构和细胞分析之间的间隙。复杂的重组提供了有关多组分冷凝物的形成,调节和功能的洞察力。我们专注于两个RNA - 蛋白质冷凝案例研究:应力颗粒和RNA加工体(Podies),并检查促进LLP的多个组件之间合作相互作用的证据。从这些研究中提出的一个重要概念是,组成和化学计量法调节冷凝水内的生化活性。基于从压力颗粒和p身体中学到的经验教训,我们讨论了了解凝结物成分之间热力学关系的前瞻性方法,其目的是开发组成和材料特性的预测模型及其对生物化活性的影响。我们预计定量重构将有助于理解各种RNA的复杂热力学和功能 - 蛋白质冷凝物。
3学士学位的强制性选修模块I)模块49 3.1每年提供的交叉区域模块。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49 3.2天体物理学和宇宙学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 3.3核心和基本零件物理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。72 3.4凝结物的物理学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。94 3.5光学,激光和原子物理学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。107 3.6加速器,等离子体和应用物理。。。。。。。。。。。。。。。。。。。。。。。。。116 3.7生物物理学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。132 3.8神经科学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。138 3.9大气和气候的物理学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。142 3.10来自其他课程(导入模块)的强制性强制性模块。。。。。。。。。144