摘要 庆大霉素最广泛用于治疗糖尿病溃疡感染,即损害最深层皮肤组织并引起感染、溃疡和皮肤损伤的神经系统疾病和外周动脉血管疾病。庆大霉素凝胶形成膜具有以下优点:具有治疗效果,对患者更美观,不粘稠,更封闭,并且可以设计为提供持续的药物释放,从而使使用频率尽可能少。本研究的目的是确定聚合物中吸收的庆大霉素的含量以及大鼠模型中糖尿病伤口愈合的有效性。通过链脲佐菌素诱导小鼠患上糖尿病,然后在其背部造成伤口。将测试动物分为 7 组,分别接受成膜凝胶基质、庆大霉素软膏、含有 PVP 和 PVA 聚合物变体 F1(4:10)、F2(3:11)和 F3(2:12)的庆大霉素成膜凝胶的治疗。使用紫外可见分光光度计测量成膜凝胶含量,并通过测量伤口长度和愈合时间来评估伤口愈合的有效性。结果表明:成膜凝胶中庆大霉素含量F1为1.19μg/mL,F2为1.80μg/mL,F3为1.44μg/mL,伤口愈合效果F1在D-5天愈合,F2在D-6天愈合,F3在D-7天愈合,庆大霉素软膏在D-10天愈合。结论:对糖尿病伤口最有效的配方是浓度为2%PVP和12%PVA的F3。
免疫。它是一线防御,防止了外国微生物的殖民化并感染了殖民[1]。阴道微生物群(VM)通常随着年龄的增长而演变,并且受妇女生殖周期不同阶段以及种族背景,阴道灌肠或无保护性交(SI)的不同阶段的影响[1-3]。尽管它也可以在过渡过程中包含少量的真菌和寄生虫,但生殖年龄的健康VM主要由乳杆菌组成,而阴道失调(VD)的特征是乳酸杆菌SPP SPP优势的丧失和微生物多样性的丧失[4-6]。VM组成的这种变化增加了细菌性阴道病(BV),外阴阴道念珠菌病和有氧性阴道炎的风险[7]。最常见的VD特征是BV,这是由于厌氧菌细菌的过度生长引起的[5]。在18-30岁的女性中,VD的估计总体患病率为35.8%,其中32.2%呈现BV [4]。VD与性传播感染(性传播感染)有关,包括人类免疫缺陷病毒(HIV),骨盆炎性疾病(PID)以及不良妊娠结局,例如早产出生以及母体和新生儿感染[4]。目前,VD治疗主要基于抗生素和/或益生菌。尽管表现出良好的治疗作用,但这种疗法提出了重要的问题
摘要:水凝胶是各种治疗剂的输送系统的有趣材料,这主要是由于水湿网络和局部和持续的药物释放。在此,通过施加简便的合成并提议为新型的治疗分子递送系统而产生具有增强降解速率的单个基于淀粉的水凝胶。淀粉用钠周期氧化在水中和轻度条件下,以产生醛衍生物,在冻结过程后,允许淀粉衍生物紧凑和稳定的水凝胶。氧化淀粉还通过Schiff碱反应与天冬酸酯交联,以将活性分子直接连接到多糖结构。这些材料在结构和形态学上都是表征的,随着时间的推移,吸附和释放的能力通过QNMR光谱证明了活性分子。在Cal-27细胞系(口服鳞状细胞癌)上评估了细胞毒性。结果表明,由于细胞培养基的肿胀能力,合成的水凝胶导致细胞上的“冷冻增殖”状态。与未处理的对照相比,通过流式细胞仪数据表明,水凝胶在细胞中诱导的“早期凋亡”和更多的“晚期凋亡”。由于所提出的材料能够控制细胞的增殖,因此它们可以在精确治疗应用领域开放新情况。
在不断发展的nanomedicine中,定制机械性能o纳米凝胶以纳米凝胶,以使他们的生物逻辑per-per mance是一项引人入胜的途径。这项工作调查了一种创新的方法或调节Sti ness O hyaluronan-胆固醇(HACH)纳米凝胶,该区域仍然具有挑战性。通过grating多巴胺(DOPA)登上HA主链,通过紫外线,1 H NMR和FT-IR分析进行了特征,我们合成了一种新型的聚合物,该聚合物自发地在水性环境中自发ORMS纳米凝胶。这些HACH-DOPA纳米凝胶的特征是它们的小尺寸(〜170 nm),负电荷(约32 mV),高稳定性,ECIENT药物封装和有效的抗氧化活性(通过ABTS测试测量)。利用贻贝启发的金属协调化学,DOPA部分通过Catechol-Fe 3 +相互作用使纳米凝胶启用了STI ness调制。这种修改会导致交联的增加,因此,通过原子ORCE显微镜(AFM)测量,具有显着增加的STI nano-gel,其含量增加,并具有Hach-dopa@Fe 3 + Complex pH依赖性且依赖性且依赖性且可转化。通过在HUVEC和HDF细胞系上的WST-1细胞促进测定法评估了细胞相容性,没有明显的细胞毒性。此外,修饰的纳米凝胶表现出增强的细胞摄取,这表明它们的巨大潜在或细胞内药物递送应用,这是由CONCONOCAL显微镜测定法支持的假设。这项工作不仅为调节纳米凝胶sti ness提供了宝贵的见解,而且还可以推进新的纳米系统或有前途的生物医学应用。
(1)借助超声波分散一定数量的凝胶,其中含有0.2 g布洛芬在50 mL流动相位中,用流动相位和过滤器稀释至100 mL(Whatman GF/C滤波器是合适的)。(2)用流动相位稀释1量溶液(1)至200卷。(3)将20 mg布洛芬bpcr溶解在2 ml乙腈R1中,在乙腈R1中加入1毫升的0.006%w/v溶液BPCR,然后用流动相位A稀释至10 ml。(4)0.0006%w/v的4'-异丁基乙烯酮BPCR(杂质E)(5)将布洛芬小瓶的含量溶解在1 ml乙腈R1中,并用流动相位稀释至5 mL。(6)在工业甲基化精神中布洛芬BPCR的2%w/v,允许站立1小时。用流动阶段A将1体积稀释至10卷(产生杂质1)。(7)用流动相位稀释1量溶液(2)至5卷。
基于水凝胶的药物输送系统 (DDS) 克服了传统疗法的局限性,例如生物利用度低、给药频繁和侵入性,为治疗眼部疾病提供了有希望的替代方案。水凝胶具有高生物相容性和对外部刺激作出反应的能力,可以提供持续和有针对性的药物输送。本综述重点介绍了水凝胶的独特性质,包括其膨胀行为、孔隙率和机械强度,使其适用于各种眼部应用。本文讨论了基于交联方法、来源和刺激响应性的水凝胶分类,强调了它们在干眼症 (DED)、青光眼、角膜碱烧伤和新生血管药物输送方面的潜力。值得注意的进展包括热敏和 pH 响应水凝胶,它们在临床前研究中显示出有希望的结果。尽管取得了这些进展,但大多数研究仍处于临床前阶段,凸显了需要进行严格的人体试验来验证水凝胶 DDS 的安全性和有效性。研究人员、药理学家和眼科医生之间的合作努力对于将这些创新转化为临床实践至关重要,最终改善眼部疾病管理的患者结果。
在凝胶制备过程中,使用浓度为 1.5% 的 TBE 缓冲液 (Tris-Borate-EDTA) 琼脂糖作为核酸电泳的基质。采用了两种不同的方法,以适应染色技术。为了使用 GelRed® 进行电泳后染色,在不添加任何类型的染料的情况下制备凝胶,然后将染料与浓度为 1:9 的上样缓冲液混合。使用该混合物将样品上样到琼脂糖凝胶中,使用 2ul 缓冲液 + GelRed® 和 6ul 扩增的 PCR 产物。然而,为了染色预电泳凝胶,通过预染色将溴化乙锭掺入琼脂糖中。这是通过在融化后将 0.5 μg/mL 的 EtBR 添加到 100 mL 琼脂糖中来实现的。在这两种方法中,电泳技术都是在以下条件下进行的
1。引言预计到2050年,世界人口将超过100亿,导致对清洁水的需求紧急升级并确保食品生产。鉴于水是人类生存的最高资源,因此工业废水排放到水体中的激增已扩大了全球水污染的重要性。在各个类别的废水中,尤其是针对染料污染的废水,这主要是由于印刷和染色工业过程的不断发展。工业领域的范围,包括纺织品,皮革,纸张,橡胶,印刷和塑料,使用了10,000多种不同的染料和颜料。这种工业化导致每年的全球合成近70万吨染料[1]。由于某些类型的固有特性,包括酸性,碱性,偶氮,重氮,蒽醌,基于分散的和金属复杂的变化,这种染料的越来越多引起了人们的关注[2,3]。这些染料中有许多染料,尤其是从苯甲胺和萘衍生的染料,表现出对人,动物和水生生物的风险构成风险的致癌和诱变属性。暴露于这些染料已与负面的健康影响有关,例如对肾脏,肝脏,脑,生殖系统和中枢神经系统的伤害以及皮肤刺激[1,4]。废水化合物的非法排放将这些挑战引起严重的环境污染。要解决染料污染的废水对人类健康和环境的有害影响,在将废水释放到
创伤性脊髓损伤(SCI)是中枢神经系统的严重伤害之一。氧化应激被认为是SCI继发期的迹象之一。因此,在患有脊髓损伤的大鼠中装有硒纳米颗粒的壳聚糖水凝胶的受控药物输送系统的设计和局部应用也被认为是神经组织中抗氧化剂变化的评估。为此,在60名女性大鼠中造成了实验性脊髓损伤,并将其随机分为三组; 1-对照组; 2-壳聚糖水凝胶组和3-壳聚糖水凝胶,装有硒纳米颗粒组。在受伤后的第3,第7,21和28天测量了脊髓组织中某些抗氧化剂的活性。结果清楚地表明,在治疗组创伤后的第3天和第7天,超氧化物歧化酶,丙二醛和谷胱甘肽过氧化物酶的数量的变化显着低于对照组。然而,在治疗组中,与对照组相比,过氧化氢酶活性水平并不显着。在本研究的两个治疗组中,脊髓(损伤部位)中自由基的创伤和产生可能较少。因此,通过减少损伤区域中氧化应激的量,带有硒纳米颗粒的壳聚糖水凝胶可能会对SCI产生积极影响。
摘要:作为中药(TCM)的代表性活跃成分和临床批准的抗癌药,Elemene(Elee)在抗肿瘤领域表现出令人兴奋的潜力;但是,对于术后癌症复发和转移等特定疾病,仍需要探索适当的药物制剂。在此,我们报告了一个带有受控药物释放动力学的ELE水凝胶,该动力学可以使Ele长时间在局部病变部位保持有效浓度,以增强ELE的生物利用度。具体化,多巴胺偶联的透明质酸合成并用来制备ELE纳米果汁包裹的水凝胶。在术后乳腺癌复发和转移的模型中,Ele水凝胶显示出96%的复发率。相比之下,游离的ELE纳米果仅显示复发率为65.5%。Importantly, the ELE hydrogel markedly stimulates a potent antitumor immune response in the microenvironment of cancer lesions, increasing antitumor immune cells such as CD8 + T cells, CD4 + T cells, and M1-type macrophages, as well as elevating antitumor cytokines including TNF- α , IFN- γ , and IL-6.总体而言,这项研究不仅可以发展TCM领域,而且还强调了受控释放水凝胶在改善抗肿瘤治疗方面的变革性影响。■简介