目录/示意图:示意图显示 OcuPair 粘性水凝胶制剂装入最终输送装置并应用于活体兔角膜损伤模型的全层角膜伤口上,然后原位交联形成密封伤口的透明水凝胶绷带。部分图片使用 Servier Medical Art(http://smart.servier.com/)中的图片绘制,根据 Creative Commons Attribution 4.0 Unported License(https://creativecommons.org/licenses/by/4.0/)获得许可。
抽象的牙菌斑是一个薄而柔软的层,其中包含细菌聚集并粘在牙齿的表面上。此牙齿斑块是无色的,因此眼睛看不到。因此,要看到牙齿,需要一个斑块染色剂。mangosteen Peel含有牙菌斑染料,形式为花色蛋白,产生紫色的红色或蓝色。除此之外,花青素是一种可溶于水的活性物质,可以与斑块中的糖蛋白结合,从而可以与斑块形成键。这项研究的目的是确定花青素中的花青素含量以及由芒果果皮提取物制成的粘膜粘附凝胶配方,该凝胶提取物是最佳的,作为牙皮斑块着色剂。该研究方法是通过测试花色苷水平的实验实验室研究,使粘膜粘附性凝胶配方具有10%,25%,50%芒果果皮提取物的基本成分,然后通过有机摄影测试,味觉测试和粘附测试通过有机摄影测试和粘附测试来测试凝胶的质量。研究结果表明,粘附性凝胶配方中的芒果果皮提取物的浓度影响了凝胶制剂的质量,其中Mangosteen Peel提取物的浓度为10%,25%和50%,能够提高制剂的颜色强度,并提高凝胶制剂的粘附力,但可以降低凝胶的扩散能力。使用芒孔果皮提取物作为公开溶液的最佳浓度是25%的浓度,因为它具有良好的粘附力和散布功率和颜色强度,与牙齿形成对比。
水飞蓟素 (SM) 是一种天然多酚类黄酮,具有抗糖尿病和降脂特性,但水溶性和生物利用度较差。本研究旨在开发一种水飞蓟素抗银屑病凝胶制剂。这项研究工作将努力最大限度地减少银屑病患者的痛苦和折磨。在目前的研究中,采用冷法设计和优化了 SM 掺入醇质体 (ETO),应用 3 2 全因子设计来克服这些缺陷。合成并评估了 SM-ETO,以确定其外观、药物包封率、尺寸分布、负电荷电位、形态研究、粉末结晶度和相变行为。优化后,将 SM-ETO 添加到含有卡巴波尔 934p 的凝胶中,并进行 pH 值、流变学研究、药物含量和体外药物释放研究。结果表明,SM-ETO 批次在 2-8°C 时未出现相分离。批次 E8 的药物包封率为 89.67%,囊泡大小为 168 nm,多分散性指数为 0.367,zeta 电位为 -0.49 mV。形态学研究显示囊泡呈细长球形。X 射线衍射研究显示 SM 粉末具有无定形性质。配制的凝胶的 pH 值范围为 6.94 至 7.18。它还显示出 9.187 (cp) 的粘度和 96.32 至 98.45% 的药物含量。体外药物释放显示凝胶批次中的 SM 释放率为 96、97、94 和 98%。综合研究结果探讨了所开发凝胶的增强溶解度和生物利用度,表明其作为纳米载体在未来临床应用中输送 SM 的潜力。综上所述,可以得出以下结论:借助制剂开发技术,成功开发了水飞蓟素醇质体凝胶制剂。关键词:醇质体、凝胶、水飞蓟素、局部应用、透皮给药。简介
糖尿病和其他病理状况会破坏伤口愈合过程,导致慢性伤口,导致严重感染。蛋白蛋白,例如溶菌酶和卵纤维蛋白,引起了人们的兴趣,尤其是因为它们表现出的抗氧化剂和抗菌活性。这些生物活性蛋白可以用来富集晚期伤口敷料膜,这可以帮助控制伤口氧化应激,从而加速伤口愈合和/或预防细菌感染。这项工作的目的是根据合成聚合物和多糖的混合物开发新型的水凝胶制剂,并掺入蛋清蛋白和/或肽,以研究其作为高级伤口敷料的适用性。研究了水凝胶的流变特性,以评估粘弹性和凝胶化行为。通过扫描电子显微镜研究了水凝胶敷料的显微结构。还评估了PBS缓冲液中的侵蚀。获得了具有伤口愈合中潜在应用的柔性,皮肤粘附的水凝胶膜。
在两个新资助的Horizon Europe项目的背景下,我们将在我们位于Neuchâtel的实验室雇用后。这些项目着重于测试气味传感器,以检测包括秋季虫在内的农作物上存在害虫的存在,以及用昆虫病的线虫控制后者。成功的申请人应具有应用昆虫学,非血液学,化学生态学和/或生物信息学的经验。化学方面的强大背景将是一个加号。她或他应该有资格在这些高度协作的项目中扮演领导角色。相关文献:Arce C.等。(2024)。基于气味的实时检测以及攻击作物植物的害虫和疾病的鉴定。Biorxiv https://doi.org/10.1101/2024.07.29.605549 Fallet P.等。 (2022)。 实验室和现场试验揭示了诱发昆虫病线虫的凝胶制剂对秋季虫毛毛虫(Spodoptera frugiperda)的生物控制的潜力。 生物控制176 https://doi.org/10.1016/j.biocontrol.2022.105086 Fallet,P。等。 (2024)。 昆虫病毒线虫是控制非洲秋季虫的有效替代方法。 pnas nexus 3(4)122 https://doi.org/10.1093/pnasnexus/pgae122该职位将从2025年夏季开始。。 通过发送简短的利息声明和您的简历(带有出版物列表和三个参考的名称),通过电子邮件向Ted Turlings教授(TED.TURLINGS@UNINE.CH)申请,后者还可以提供有关项目的更多详细信息。Biorxiv https://doi.org/10.1101/2024.07.29.605549 Fallet P.等。(2022)。实验室和现场试验揭示了诱发昆虫病线虫的凝胶制剂对秋季虫毛毛虫(Spodoptera frugiperda)的生物控制的潜力。生物控制176 https://doi.org/10.1016/j.biocontrol.2022.105086 Fallet,P。等。(2024)。昆虫病毒线虫是控制非洲秋季虫的有效替代方法。pnas nexus 3(4)122 https://doi.org/10.1093/pnasnexus/pgae122该职位将从2025年夏季开始。通过发送简短的利息声明和您的简历(带有出版物列表和三个参考的名称),通过电子邮件向Ted Turlings教授(TED.TURLINGS@UNINE.CH)申请,后者还可以提供有关项目的更多详细信息。申请的第一个截止日期:2025年3月28日(但也将考虑后来的申请)
当前,融合沉积建模(FDM)是一种3D打印技术,最广泛地用于开发创新的药物输送方法来克服口服药物管理的局限性。普萘洛尔的血浆半衰期短,并且在酸性环境中溶解了。因此,这项研究旨在开发一种胃浮动的3D印刷装置(GFD),以维持胃中释放作为胃腐内药物输送系统。选择了乳酸(PLA)以制造GFD。浮力设计的内部建筑中包括一个空气室。修改了GFD侧壁上的开放通道数量以调节释放。普萘洛尔凝胶制剂由普萘洛尔和聚乙烯基吡咯烷酮(PVP)的混合物组成,重量比为6:5,然后使用注射器将其加载到GFD中。GFD表现出重量变化和形状尺寸的低标准偏差(SD)值超过24小时的浮动能力。从GFD中释放的普萘洛尔释放显示在模拟的胃环境中持续的释放性能而没有滞后时间。GFD的4和5通道表现出持续的药物释放6小时。此外,通过2和3个通道从GFD实现了持续释放的持续时间。propranolol从GFD中的动力学释放是零级的最佳拟合。因此,可以根据每位患者的身份来设计GFD来控制药物释放,该患者有可能在各种药物中应用个性化的胃类药物递送。
抽象背景/目的:本研究的目的是设计和准备浮动原位凝胶,以维持卡维迪尔(CVD)释放并增强口服生物利用度。通过离子凝胶法制备了CVD的各种浮动原位凝胶制剂。材料和方法:采用制剂设计中的系统方法,使用羟丙基甲基纤维素(HPMC K4M),羟丙基纤维素(HPMC 100LV),硫酸钠,含Mimosa pudica pudica seed MiCOSIMA酸酸盐酸(SODICA)与各种浓度(SODICASIMA GIMACISMA gymoma gymoma gymoma gymoma gymoma gymoma gymoma,研究了碳酸氢盐的物理化学特性(体外浮动行为,药物释放概况等)。随后,基于物理化学特性涉及最终优化步骤,以实现所需的效果。结果:基于研究,HPMC K4M,HPMC 100LV,藻酸钠和Mimosa Pudica种子粘液(F17)表现出良好的浮动特性(60秒sec浮动滞后时间),药物释放的药物为96.98±2.1%,释放了12小时,该药物释放的序列均释放为ZERO,并释放了序列。在白化兔中F17的体内X射线研究表现出良好的浮动能力,最大为8小时。发现优化和对照(CARLOC)的生物利用度分别为41.95±0.8892μg.hr/ ml和26.36±1.1603μg.hr/ ml。用优化的配方进行了加速稳定性研究,并在研究期间观察到稳定。结论:得出结论,用天然聚合物开发的Carvedilol的原位原位凝胶适合GRDDS增强口服生物利用度。
纳米凝胶在降低癌症耐药性中的应用Vitalis B. Mbuya,N。Vishal Gupta**和Tenzin Tashi药物系JSS药学系,JSS药学院,JSS JSS大学,Sri Shivarathreeshwara Nagara,Mysuru,Mysuru,Karnataka,Karnataka,sri Shivarathreeshwara _____________________________________________________________________________________________ ABSTRACT Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance (MDR) which hinders chemotherapy efficacy.MDR的潜在因素包括增强的药物解毒,药物摄取降低,细胞内亲核试剂水平升高,药物诱导的DNA损伤的修复,过度的药物转运蛋白(例如P-糖苷蛋白(P-GP)),多药耐药性抗性蛋白(MRP1,MRP1,MRP2)(MRP1,MRP2)和乳腺癌耐药蛋白(MRP1,MRP1)和BCRP(BCRP)。已开发出新的化学治疗药物递送系统来打击耐药性和多药耐药性。纳米凝胶用于在癌症化学疗法中更有效地输送药物。这些新颖的应用和技术包括:用于加载siRNA的纳米凝胶。这是一个小的干扰RNA(siRNA)是一类双链RNA分子,该分子由21-23个核苷酸组成,涉及抑制由Messenger RNA编码的蛋白质合成。纳米凝胶用作携带siRNA的载体。另一种技术和应用是基于透明质酸的纳米凝胶 - 药物结合物,其抗癌活性增强,旨在靶向CD44阳性和耐药性肿瘤。关键词:纳米凝胶的应用;耐药性癌症化疗;癌症化疗中的纳米凝胶。在这种技术中,具有疏水性核心的小纳米凝胶颗粒和在超声波化后形成的高药物载荷,并在可生物降解酯连接的水解后证明了持续的药物释放。将在本评论文章中讨论的其他技术和应用程序包括;活化的核苷类似物的新型抗癌聚合物共轭物,具有磷酸化核苷类似物的纳米凝胶制剂和5'三磷酸核苷类似物的5'三磷酸酯的交联聚合纳米凝胶制剂。_____________________________________________________________________________________________ INTRODUCTION The term ‘nanogels' defined as the nanosized particles formed by physically or chemically crosslinked polymer networks that swell in a good solvent.首先引入了术语“纳米凝胶”(纳米凝胶)(纳米凝胶),以定义聚子和非离子聚合物的交联双功能网络,用于递送多核苷酸(交联的聚乙烯胺(PEI)(PEI)(PEI)和聚乙二醇)和(PEG-cl-cl-cl-cl-Pei)。纳米技术领域的突然爆发引入了开发纳米凝胶系统的需求,这些纳米凝胶系统证明了他们以受控,持续和可目标的方式运送药物的潜力。[1]癌症的治疗涉及手术,包括手术,放疗和化疗。化学抗性的发展是治疗局部和传播疾病期间的持续问题。有选择地但不仅靶向积极增殖细胞的大量细胞毒性药物包括诸如DNA烷基化剂,抗替代剂,抗量代谢剂,互化剂和有丝分裂抑制剂等多种基团。抗性构成对药物诱导的肿瘤生长抑制的反应;它可能是异质癌细胞亚群固有的,也可能是对药物暴露的细胞反应。主要机制可能包括涉及多药耐药性(MDR)基因的P-糖蛋白产物以及其他相关蛋白的膜转运的改变,改变了靶酶(例如,突变的拓扑异构酶II),药物激活降低,