膜的油水分离效率通过紫外可见光谱进行评价(Lu & Yuan,2017)。膜(1-6)的分离效率如图5(a,b,c)所示,依次代表三个分离时间的分离效率,纸基(35°SR)为对照
完整作者名单: Quigley, Elena;罗彻斯特大学,化学 Johnson, Jade;罗彻斯特大学,化学 Liyanage, Wathsala;约翰霍普金斯医学院校区,眼科学 Nilsson, Bradley;罗彻斯特大学,化学
2.1 软质聚氨酯泡沫的基本化学性质…………………………………………... 5 2.1.1 发泡反应………………………………………………………………………………………….. 5 2.1.2 凝胶化反应……………………………………………………………………………………… 6 2.1.3 异氰酸酯基团化学性质…………………………………………………………………………... 7 2.1.4 泡沫配方的组分………………………………………………………………………….8 2.1.4.1 异氰酸酯 ………………………………………………………………………………… 10 2.1.4.2 多元醇 ………………………………………………………………………………... 12 2.1.4.3 水 ……………………………………………………………………………………… 17 2.1.4.4 催化剂 …………………………………………………………………………………… 17 2.1.4.5 表面活性剂 ………………………………………………………………………………… 19 2.1.4.6 交联剂 …………………………………………………………………………….20 2.1.4.7 辅助发泡剂 ………………………………………………………………… 21 2.1.4.8 添加剂 ………………………………………………………………………………….. 21
2.1 软质聚氨酯泡沫的基本化学性质…………………………………………... 5 2.1.1 发泡反应………………………………………………………………………………………….. 5 2.1.2 凝胶化反应……………………………………………………………………………………… 6 2.1.3 异氰酸酯基团化学性质…………………………………………………………………………... 7 2.1.4 泡沫配方的组分………………………………………………………………………….8 2.1.4.1 异氰酸酯 ………………………………………………………………………………… 10 2.1.4.2 多元醇 ………………………………………………………………………………... 12 2.1.4.3 水 ……………………………………………………………………………………… 17 2.1.4.4 催化剂 …………………………………………………………………………………… 17 2.1.4.5 表面活性剂 ………………………………………………………………………………… 19 2.1.4.6 交联剂 …………………………………………………………………………….20 2.1.4.7 辅助发泡剂 ………………………………………………………………… 21 2.1.4.8 添加剂 ………………………………………………………………………………….. 21
为人类肌肉茎(Hmustem)细胞获得的临床前数据表明其在肌肉损伤的背景下的巨大修复能力。但是,它们的临床潜力受到移植后中等生存能力的限制。要克服这些局限性,它们在保护环境中的封装将是有益的。在这项研究中,研究了使用外部或内部凝胶化获得的可调节钙 - 阿尔金酸盐水凝胶作为Hmustem细胞封装的新策略。使用原子力显微镜通过压缩实验来表征这些水凝胶的机械性能。测量的弹性模量强烈取决于胶凝模式和钙/藻酸盐浓度。分别在内部和外部凝胶化后制备的水凝胶获得了从1到12.5 kPa和3.9至25 kPa的值。此外,水凝胶的机械性能差异是由其内部组织产生的,具有内部凝胶的各向同性结构,而外部模式导致各向异性。进一步表明,释放后,保留了藻类水凝胶中掺入的Hmustem细胞的生存力,形态和肌原分化char术。这些结果表明,封装在钙钙酸钙水凝胶中的Hmustem细胞保持其功能,从而可以开发肌肉再生方案以提高其治疗功效。
为人类肌肉茎(Hmustem)细胞获得的临床前数据表明其在肌肉损伤的背景下的巨大修复能力。但是,它们的临床潜力受到移植后中等生存能力的限制。要克服这些局限性,它们在保护环境中的封装将是有益的。在这项研究中,研究了使用外部或内部凝胶化获得的可调节钙 - 阿尔金酸盐水凝胶作为Hmustem细胞封装的新策略。使用原子力显微镜通过压缩实验来表征这些水凝胶的机械性能。测量的弹性模量强烈取决于胶凝模式和钙/藻酸盐浓度。分别在内部和外部凝胶化后制备的水凝胶获得了从1到12.5 kPa和3.9至25 kPa的值。此外,水凝胶的机械性能差异是由其内部组织产生的,具有内部凝胶的各向同性结构,而外部模式导致各向异性。进一步表明,释放后,保留了藻类水凝胶中掺入的Hmustem细胞的生存力,形态和肌原分化char术。这些结果表明,封装在钙钙酸钙水凝胶中的Hmustem细胞保持其功能,从而可以开发肌肉再生方案以提高其治疗功效。
分散在悬浮液中的粘合剂颗粒可以自组装成刚性渗透的凝胶网络。凝胶无处不在,从蛋白质组装和胶体悬浮液到水泥水合物中。他们的结构和机械性能在很大程度上取决于它们通过粒子粒子相互作用和外部驾驶的形成历史,包括:排斥和吸引力强度,流动,活动和流体动力。在筛选长范围静电排斥并范德华力强的状态下,例如在盐水和浊度悬浮液中,摩擦固体接触可以在颗粒之间形成,阻碍相对滑动和滚动运动。摩擦会影响凝胶化动力学,其中网络可以在微米大小颗粒的几秒钟内形成和冻结。此外,接触老化可以转化为时间依赖性的弹性模量和产生应力。在数值侧,众所周知,强粘性悬浮液的凝胶对固体相互作用非常僵硬,这是很难的 - 它们在纳米表尺度上有所不同,而粒子是微米大小的。为了探测强粘性摩擦颗粒的极限,在实习期间,我们建议开发一种新型算法,以建模具有硬约束的布朗胶体颗粒的3D聚集,并将其转化为在动态歧管上的随机轨迹。这项工作将包括使用基于标准粒子的方法以及约束优化算法的使用。一起,我们将研究滑动和滚动摩擦如何影响凝胶化动力学,网络形成结构及其机械性能。
在静磁场(H)下将 Fe 3 O 4 @PVP NPs 与吸收的单体一起混合形成纳米粒子链;(iii)紫外线引发单体凝胶化并在纳米粒子链上形成响应性水凝胶壳。bg pH-RPNR 的表征。Fe 3 O 4 @poly(AA-co-HEA) pH-RPNR 的光学显微镜(b、c)、SEM(d)和 TEM(e)图像、FT-IR 光谱(f)和磁滞回线(g)。b、d 和 e 中的插图描绘了相应的高度放大图像。c 中的插图给出链长分布的直方图。
该项目旨在设计一套实时测量液体粘度的系统,适用于加热蜂蜜或气凝胶凝胶化等动态应用。粘度是描述液体流动行为的关键参数,会因温度或化学反应等外部因素而发生变化。该系统将基于适当的测量原理,实现连续数据采集,并在超过定义的阈值时发出警告。除了硬件开发(包括传感器集成和信号处理)外,还将实施用于实时数据分析和阈值监控的软件解决方案。目标是创建一个功能原型,在各种应用场景中提供精确、稳定和可靠的测量。