摘要:本文报道了一种简单廉价的湿化学法合成 Fe/Cr 共掺杂氧化铜纳米粒子的详细方法。用溶胶-凝胶化学法制备的纯 CuO 纳米粒子和 Fe、Cr 取代的 CuO 纳米粒子适合工业应用。初步的 X 射线衍射和 Rietveld 细化研究表明,该纳米粒子具有纯晶体性质,单斜晶体具有 C2/c 相。根据 Scherrer 公式计算的平均晶粒尺寸为 21nm 量级,进一步的观察表明,随着浓度的增加,晶体尺寸增加。扫描电子显微镜 (SEM) 图像显示粒子在 20-30nm 范围内。拉曼光谱研究表明,掺杂 Cr 和 Fe 的 CuO 纳米粒子中存在分子团。
目录 一般发布 5 媒体服务 6 STS-42 简要介绍 7 轨迹事件序列 8 主要活动摘要 8 航天飞机中止模式 9 飞行器和有效载荷重量 10 STS-42 发射前处理 15 IML 科学操作 16 生命科学实验 17 重力植物生理学实验 24 微重力前庭调查 26 心理工作负荷表现实验 27 加拿大参与 IML-1 28 空间生理学实验 29 材料科学实验31 空间加速度测量系统 40 溶胶凝胶化:应用微重力研究 41 逃离特辑(气体) 43 聚合物膜处理研究(IPMP) 45 IMAX 47 学生实验 48 辐射监测设备-III(RME-III) 49 STS-42 机组人员传记 50 STS-42 任务管理 54
糖尿病和其他病理状况会破坏伤口愈合过程,导致慢性伤口,导致严重感染。蛋白蛋白,例如溶菌酶和卵纤维蛋白,引起了人们的兴趣,尤其是因为它们表现出的抗氧化剂和抗菌活性。这些生物活性蛋白可以用来富集晚期伤口敷料膜,这可以帮助控制伤口氧化应激,从而加速伤口愈合和/或预防细菌感染。这项工作的目的是根据合成聚合物和多糖的混合物开发新型的水凝胶制剂,并掺入蛋清蛋白和/或肽,以研究其作为高级伤口敷料的适用性。研究了水凝胶的流变特性,以评估粘弹性和凝胶化行为。通过扫描电子显微镜研究了水凝胶敷料的显微结构。还评估了PBS缓冲液中的侵蚀。获得了具有伤口愈合中潜在应用的柔性,皮肤粘附的水凝胶膜。
现代神经科学越来越依赖 3D 模型来研究神经回路、神经再生和神经疾病。人们已经探索了几种不同的生物制造方法来创建 3D 神经组织模型结构。其中,3D 生物打印已显示出成为高通量/高精度生物制造策略的巨大潜力,可以满足对 3D 神经模型日益增长的需求。在这里,我们回顾了神经组织工程的设计原则。将打印技术应用于神经组织模型的生物制造的主要挑战是开发神经生物墨水,即具有可打印性和凝胶化特性且适用于神经组织培养的生物材料。这篇综述介绍了广泛的生物材料以及 3D 神经组织打印的基础知识。此外,还回顾了 3D 生物打印技术的进展,特别是针对生物打印神经模型。最后,讨论了用于评估制造的 2D 和 3D 神经模型的技术,并在可行性和功能性方面进行了比较。
局部滴注眼滴仍然是最常见的,对于大多数最简单的眼药管理途径,代表了许多眼部疾病的选择治疗。然而,局部施用的药物分子的低眼生物利用度可以大大限制其疗效。在过去的几十年中,已经开发了许多药物输送系统(DDS),以改善眼表上的药物生物利用度。本综述系统地涵盖了通过局部滴注适用的DDS的最新进展,与标准眼滴配方相比,在体内模型上表现出更好的性能。这些输送系统基于原位形成凝胶,纳米颗粒和两者的组合。大多数DDS都是使用天然或合成聚合物开发的。聚合物为设计高级DDS(包括生物相容性,凝胶化特性和/或粘膜粘附性)提供了许多有利的特性。然而,尽管在过去十年中发表了大量的研究,但DDS的临床翻译却存在一些局限性。本评论还提出了新DDS商业化的潜在挑战。
胆固醇 27 和酰胺 28 在凝胶化学中很常见,利用 LMWG 实现必要且有效的合成仍然很困难。随着超分子凝胶化过程的演示,凝胶研究的当前方向 29 是将金属离子与 LMWG 一起引入,以形成多功能超分子金属凝胶。多种金属离子和低分子量有机组分的组合相结合,可生成具有不同自聚集机制和非共价特性的金属同质凝胶,从而导致在科学和技术领域开发出更引人注目和卓越的特性。超分子金属凝胶在材料科学的众多领域有着重要的应用,包括食品工业、化妆品、电子发射、光物理、逻辑门、药物输送、细胞培养、生物矿化、医学诊断、组织工程、光刻、光学活性、能量存储、电荷传输、催化、导电性、执行器、磁性材料、氧化还原响应、化学传感器、电化学和光电器件、纳米科学和纳米电子学等。30 – 49
ARA ® XTREME PY 2100 US 是一种粘度极低、功能性强、纯度高的胺基树脂,具有相对良好的储存稳定性。它固化速度非常快,可生产出具有极高热变形温度的产品。ARA ® XTREME PY 2100 US 是一种特别有效的树脂,适用于各种配方应用,包括粘合剂、层压系统等。它可以用作粘度调节剂,也可以与慢反应性树脂一起使用以提高其固化速度;但是,由于其快速固化特性,在选择固化剂和固化条件时必须谨慎。即使是适量的树脂,在与脂肪胺固化时,也会产生足够的放热,导致烧焦和冒烟。如果芳香胺硬化系统在过高的温度下凝胶化,或者单独使用或与芳香族硬化剂结合使用催化剂(例如三氟化硼单乙胺),也会出现这种情况。 ARA ® XTREME PY 2100 US 是对氨基苯酚的三缩水甘油酯,其化学结构如下所示。
摘要:在本文中,我们介绍了一项有关聚合物衍生的氧气(SIOC) /石墨复合材料的研究,用于潜在用作高功率储能设备中的电极,例如锂离子电容器(LIC)。使用高功率超声辅助溶胶 - 凝胶合成进行了复合材料,然后进行热解。密集的超声处理增强了凝胶化和干燥过程,从而改善了前陶瓷混合物中石墨akes的均匀分布。使用X射线差异,29 si固态NMR和拉曼光谱法表明组件之间未发生反应,使用X射线差异,29 si固态NMR和拉曼光谱对SIOC /石墨复合材料进行了理化研究。与纯组分相比,SIOC /石墨复合材料记录的高电流率(1.86 A g -1)的能力(1.86 a g -1)显示出了增强的能力(高达63%)。此外,向SIOC矩阵添加石墨降低了划界势的值,这是LIC中阳极的理想特征。
胆固醇,27岁和酰胺28在凝胶的化学中是一般的,利用LMWGS实现了必要的和有效的合成,仍然很不错。与超分子凝胶化过程的演示一起,凝胶研究29中的当前方向是金属离子以及LMWGS以及用于形成多功能超分子抗凝胶的LMWG。低分子量的多种金属离子和有机成分的组合结合在一起,以产生具有独特的自我聚集机制和非共价特征的母凝度,从而导致在科学和技术领域发展更具吸引力和出色的特性。Supramolecular metallogels have signi cant applications in a wide range elds of materials science, including the food industry, cosmetics, electron emission, photophysics, logic gates, drug delivery, cell culturing, biomineralization, medical diagnostics, tissue engineering, lithography, optical activity, energy storage, charge transportation, catalysis, conductivity, actuators, magnetic materials, redox responsive- ness,化学传感器,电化学和光电设备,纳米科学和纳米电子学等30 - 49