一种用于视觉诱发脑电图 (EEG) 信号的干电极头戴式传感器已经进入游戏市场,它可以无线、低成本地实时跟踪用户对目标区域的注视。与传统的 EEG 传感器不同,这种新设备易于非专业人员设置。我们进行了一项菲茨定律研究 (𝑁 = 6),发现平均吞吐量 (TP) 为 0.82 位/秒。该传感器性能稳定,错误率低于 1%。总体中位激活时间 (AT) 为 2.35 秒,一个和九个并发目标之间的差异很小。我们讨论了该方法是否可以补充基于摄像头的注视交互,例如,在注视输入或轮椅控制方面,并注意到一些局限性,例如 AT 速度慢、浓密头发时校准困难以及 10 个并发目标的限制。
左:眼睛跟踪器摄像机拾取用户的目光。右:使用目光来控制打字应用程序。已经提出了几种遏制MIDAS触摸问题的方法。一种方法是选择注视,但不能激活接口元素。一个典型的例子是使用自愿眨眼来确认基于目光的选择。,但这假定眼睛始终是自愿的。第二种方法是测量用户眼睛的总时间在接口元素中(“ dell Time”)(Jacob和Stellmach,2016年)。如果停留时间超过一定的阈值值,则该元素将被激活。选择阈值大于典型的眼固定持续时间。这种方法的问题是没有固定的固定时间表明用户的意图。第三种方法是具有凝视驱动的光标(“凝视鼠标”)并进行鼠标点击以确认选择(Kasprowski等,2016)。,但这不是免提解决方案。第四种方法是双重视线方法(Mohan等,2018),在这种情况下,用户凝视着他/她想要
凝视是一种将他人关注转向特定位置的重要且有力的社会提示。但是,在许多情况下,方向符号(如箭头)实现了类似的目的。是由总体问题进行的,人造系统如何有效地传达方向信息,我们进行了两个提示实验。在两个实验中,都要求参与式插图识别屏幕上出现的外围目标,并通过按下按钮尽快响应它们。在出现目标之前,屏幕中心显示了一个提示。在实验1中,提示是凝视或指向一个方向的箭头或箭头,但对目标位置无可预测。对早期研究的意见,我们发现箭头或凝视的侧面有一个反应时间益处。延伸了早期的研究,我们发现这种效应在垂直轴和水平轴之间以及面部和箭头之间是不可或缺的。在实验2中,我们使用了100%的“反预测性”提示;也就是说,目标总是发生在与凝视或箭头方向相反的一侧。具有没有固有定向含义(颜色)的线索,我们控制了一般学习效果。尽管在实验1中观察到的非预测性目光与非预测性箭头提示之间的定量匹配,但反预测箭头比中性提示的反应时间益处比对反预测性目光的相应益处更强大。这种差异可能具有实际相关性,例如,在人机相互作用的背景下设计提示时。这表明 - 如果符合其固有方向的功效,则与箭头更难覆盖或重新解释。
经过多年的倾向和服务的一切倾向,AI激发了虚拟化和严峻的预算的转变。长期以来被视为整个企业中数字转换的灯塔,IT函数现在正在进行AI转换。由于生成型AI的适用性,用于编写代码,测试软件以及扩大技术人才的一般,具有前瞻性的技术领导者正在利用当前时刻作为曾经蓝色的月球机会,可以在五个支柱上转变它:基础设施,工程,融资,财务运营,人才和创新。随着传统和生成的AI功能的增长,技术的每个阶段都可以看到从负责人的人向人类转向循环中的转变。这样的举动最终可以将其恢复到一种新形式的精益形式,利用公民开发人员和AI驱动的自动化。
目光的估计已成为最近研究日益兴趣的主题。大多数当前方法都依赖于单视面图像作为输入。然而,这些副本很难处理较大的头部角度,从而导致估计的准确性。要解决此问题,添加二视摄像头可以帮助更好地捕获眼睛的外观。但是,现有的多视图方法具有两个限制。1)他们需要培训的多视图注释,这很昂贵。2)更重要的是,在测试过程中,必须知道多个相机的确切位置并与训练中使用的相匹配,这限制了应用程序场景。为了应对这些挑战,我们提出了一种新颖的1视图 - 2视图(1-2视图)适应解决方案,在本文中,无监督的1-2视图适应框架 - 用于注视估计的工作(UVagaze)。我们的方法适应了一个传统的单视凝视估计器,以灵活地放置了双摄像头。在这里,“灵活”意味着我们将双摄像头放在任意位置,而不论训练数据如何,而不知道它们的外部参数。具体来说,乌瓦加兹(Uvagaze)建立了双视图相互监督适应策略,它利用了两种观点之间的凝视方向的内在一致性。以这种方式,我们的方法不仅可以从常见的单视图预训练中受益,而且还可以实现更高级的双视凝视估计。实验结果表明,单视图估计量适用于双重视图,可以获得更高的效果,尤其是在跨数据集设置中,取代率提高了47.0%。项目页面:https://github.com/ mickeyllg/uvagaze。
本报告记录了为期三天的达格斯图尔研讨会 18252“无处不在的凝视感应和交互”的计划和成果。光学设备的小型化和计算机视觉的进步以及更低的成本点导致凝视感应功能在计算系统中的集成度增加。眼动追踪不再局限于控制良好的实验室环境,而是进入日常环境。因此,本次达格斯图尔研讨会汇集了计算机图形学、信号处理、可视化、人机交互、数据分析、模式分析和分类方面的专家,以及在不同学科中使用眼动追踪的研究人员:地理信息系统、医学、航空、心理学和神经科学,以探索未来的应用并确定可靠凝视感应技术的要求。这促进了对话,并允许:(1)计算科学家了解记录和解释凝视数据所面临的问题;(2)凝视研究人员考虑现代计算技术如何潜在地促进他们的研究。会议还讨论了有关凝视感应和交互的普遍部署的其他问题,例如在日常环境中部署凝视监测设备时的道德和隐私问题。
自然眼球运动主要研究了泡茶、做三明治和洗手等过度学习的活动,这些活动具有固定的相关动作顺序。这些研究表明,低级认知图式的顺序激活有助于完成任务。然而,当任务新颖且必须立即规划一系列动作时,这些动作图式是否会以相同的模式激活尚不清楚。在这里,我们记录了自然任务中的凝视和身体运动,以研究面向动作的凝视行为。在虚拟环境中,受试者在真人大小的架子上移动物体以达到给定的顺序。为了强制认知规划,我们增加了排序任务的复杂性。与动作开始一致的注视表明凝视与动作序列紧密相关,任务复杂性适度影响了任务相关区域上的注视比例。我们的分析表明,凝视恰好及时分配给与动作相关的目标。规划行为主要对应于在动作开始前对任务相关对象的更大视觉搜索。研究结果支持了这样一种观点:自然行为依赖于对工作记忆的节俭使用,人类不会对环境中的物体进行编码来规划长期行动。相反,他们更喜欢即时规划,即搜索当前与行动相关的物品,将他们的身体和手引导到该物品上,监控该行动直到行动终止,然后继续执行下一个行动。
(正,t = -5.441,p <0.001;负,t = -4.612,p <0.001;混乱,t = -5.180,p <0.001)。