由于生物和非生物胁迫及其意外的组合,全球植物的发展和作物生产率大大降低。迄今为止,采用的各种化学物质(农药,肥料和植物调节剂)和基因工程技术来提高农作物对多种压力的耐受性,对环境产生了负面影响,并且耗时。这加快了努力,以寻找更环保的方法来控制植物压力。壳聚糖是一种生物聚合物,在很大程度上是从几丁质的脱乙酰基中提取的,并且似乎是克服这些问题以寻找更环保的解决方案的可行工具。由于其生物相容性,生态友好和经济性,成为农业中最受欢迎的生物聚合物之一。壳聚糖还通过信号转导途径激活防御机制,并转导过氧化氢和一氧化氮的二级分子以清除活性氧。在承受诸如干旱,盐和热量等非生物胁迫之前的壳聚糖已被证明可刺激植物的生长并增强抗氧化剂酶的产生,次生代谢产物和脱甲酸。在干旱中,它有助于积累OSMO - 细胞剂,以维持植物细胞的水潜力。另一方面,植物对壳聚糖的反应根据其结构,剂量,发育阶段和作物类型而变化。牢记这些事实的目的是为了更新有关壳聚糖的最新研究,其各种来源及其在不同作物中的有效浓度,针对生物性和非生物压力管理的作用机制,以改善农业的作物生产。
微生物对植物病的控制是指生物控制。在这项研究中,三种细菌菌株pantoea groclomerans b1,serratia plymuthica b2和proteus mirabilis b3是最初从饮用水来源分离出的细菌菌株,埃及埃及的El-Gharbia省的饮用水。孤立的细菌菌株的起源包含三种饮用水来源:尼罗河,水龙头和地面。这种水产养殖具有细菌的商业化产生了经济利润,而水含有细菌产生的拮抗材料对土壤传播的真菌产生不利影响。这些水源在农业中非常重要,尤其是在灌溉作物时。在体外,pantoea grogmerans b1,serratia plymuthica b2和proteus mirabilis b3检查了其针对土壤传播的真菌根源索拉尼的拮抗活性,这是几种工厂的幼苗湿润的真菌。serratia plymuthica b2表现出对真菌生长的高水平。另外,评估了三种细菌菌株的生产裂解酶(几丁质酶,β-1,3 - 葡萄糖酶),铁质酸(SA)和氢氰化氢(HCN)。所有拮抗材料生产分别记录了菌株B2和B1的高级值。观察到了三种细菌菌株对R. solani的拮抗潜力与其ß-1,3 - 葡萄糖酶,SA和HCN的水平之间的最高关系。提到的细菌菌株的抗真菌代谢产物被认为有助于这些细菌的拮抗活性。
摘要:番茄果实在贮藏期间极易受到主要病原菌灰葡萄孢(B. cinerea)的侵染。最近的研究表明,自噬在植物防御生物和非生物胁迫中至关重要。自噬相关基因5(ATG5)在自噬体的完成和成熟中起关键作用,并被灰葡萄孢菌快速诱导,但ATG5在番茄采后果实抗灰葡萄孢菌中的潜在机制尚不清楚。为了阐明SlATG5在番茄果实抗灰葡萄孢菌中的作用,本研究采用CRISPR/Cas9介导的SlATG5敲除技术。结果表明,slatg5突变体对灰葡萄孢菌的感染更加敏感,病害症状更加严重,抗病酶几丁质酶(CHI)、β-1,3-葡聚糖酶(GLU)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)等活性降低。此外,研究还观察到接种灰葡萄孢菌后,slatg5突变体中水杨酸(SA)信号相关基因SlPR1、SlEDS1、SlPAD4、SlNPR1的相对表达量高于WT,而茉莉酸(JA)信号相关基因SlLoxD和SlMYC2的相对表达量低于WT。这些结果表明,SlATG5 通过抑制 SA 信号通路和激活 JA 信号通路正向调控番茄果实对灰霉病菌的抗性反应。
摘要:最近发现DNA N6-甲基趋化(6MA)在基因中扮演调节作用,该作用与真核物种的各种生物学过程联系起来。6MA甲基转移酶的功能鉴定对于理解表观遗传6MA甲基化的潜在分子机制至关重要。据报道,甲基转移酶METTL4可以催化6ma的甲基化。但是,METTL4的功能在很大程度上未知。在这项研究中,我们旨在研究Bombyx Mori同源性METTL4(BMMETTL4)在鳞翅目模型昆虫中的作用。通过使用CRISPR-CAS9系统,我们在蚕中对BMMETTL4进行了体积突变,发现BMMETTL4的破坏会导致蚕胚晚期的发育缺陷和随后的致死性。我们进行了RNA-Seq,并确定了BMMETTL4突变体中有3192个差异表达的基因,其中包括1743个上调和1449个下调的基因。基因和基因组分析的基因本体论和京都百科全书表明,涉及分子结构,几丁质结合和丝氨酸水解酶活性的基因受BMMETTL4突变的显着影响。我们进一步发现,表皮蛋白基因和胶原蛋白的表达明显降低,而胶原酶高度增加,这对异常的胚胎和蚕的孵化性降低了。采取了这些结果,这些结果表明6MA甲基转移酶BMMETTL4在调节蚕的胚胎发育中的关键作用。
不适当和过度使用化学物质会对一种健康产生几种负面影响。因此,对害虫控制替代措施的研究是紧迫而必要的。此外,联合国2030年议程强调了实现粮食安全和促进可持续农业的目标。因此,使用生物控制是非常必要的。在这种情况下,使用真菌的微生物控制突出。一些特定的真菌是线虫的天然敌人,因为真菌消耗了线虫。这些食肉真菌被称为黑凝真菌(NF)。nf几乎存在于真菌王国的几乎所有分类群中,可以分为五个群体:线虫捕获/捕食者,机会主义或卵巢群,内寄生虫,产生毒素的真菌,以及特殊攻击设备的生产者(Soares等人,2018年)。这些微生物具有生物技术利益,超出了生物控制。此外,突出了这些酶和纳米颗粒的产生,这些酶和纳米颗粒的生产得到了强调,这些生物被强调了核苷酸活性(Barbosa等,2019; Soares等,2023)。因此,在这个研究主题中,Al-Ani等人。回顾了NF在生物技术和可持续农业中的作用。根据影响线虫的机制,他们将NF分为两种类型:直接(载植物,内寄生虫,囊肿或产生毒素的卵寄生虫,以及特殊攻击装置的生产者)或非导向效应(瘫痪的毒素,影响Nematodes的生命周期)。这种机会性真菌具有在壳聚糖作为其唯一营养来源的能力。此外,作者讨论了NF关于NF对环境的适应及其对线虫的作用的一些分子机制。是最突出的NF产品之一,并且在控制感兴趣的植物寄生线虫的研究中是Pochonia chlamydosporia。壳聚糖是由几丁质的N-二乙基形式产生的多糖。此外,它在控制植物有害生物和疾病方面有效。在这个研究主题中,Lopez-Nuñes等。讨论了白疟原虫在植物上执行的有益内生作用,以及壳聚糖和黑凝真菌的联合使用如何成为对线虫和其他根病原体生物学控制的新型策略。
1. 引言 提高药物溶解度、渗透性和生物利用度一直是其商业化面临的主要挑战之一。在这方面,药物输送系统已被开发成一种有前途的方法 [1,2]。随着纳米技术的进步,人们开发出一类新型纳米粒子,它具有多种优点,如提高药物溶解度、减少所需剂量、持续释放药物、靶向输送药物和提高生物利用度 [3,4]。合成 [5] 和天然聚合物 [6,7] 及其组合 [8] 已被用于药物输送。树胶、粘液和多糖等天然聚合物无毒、生物相容性好、价格低廉且广泛可用。在多糖中,海藻酸钠 (SA) 和壳聚糖 (CS) 已被广泛用于输送不同的药物,例如一种新型药物输送系统 [9–14]。SA 是一种可生物降解且生物相容性的天然聚合物,可导致各种药物凝固。 SA 由 (1-4) 连接的-D-甘露糖醛酸 (M) 和-L-古洛糖醛酸 (G) 以各种排列和比例组成。这种生物聚合物可以在二价阳离子(如 Ca 2+ 、Ba 2+ 、Sr 2+ 和 Zn 2+ )存在下形成水凝胶。此类水凝胶结构可以包封药物,可用于设计 DDS(药物递送系统)[15,16]。多项研究集中于开发用于口服药物控制递送的海藻酸钙 (CA) 珠 [17–19]。CS 是一种线性、生物且无毒的多糖,其中 D-葡萄糖胺和 N-乙酰-D-葡萄糖胺单元通过 β-(1-4) 糖苷键连接。CS 可通过部分破坏几丁质来分离。这种天然多糖已广泛应用于 DDS [20–22]。珠粒中 CA 和 CS 的交联可能对医学和药物研究有用。与组成它们的聚合物相比,这种混合系统可以提供更高的稳定性 [23]。CA 和 CS 纳米载体 (CA-CS NC) 在 DDS 中的应用最近引起了极大关注。例如,Nalini 等人合成了 SA/CS 纳米颗粒 (NP) 用于药物输送,从而提高了治疗效果和疗效 [24]。
淡水信号小龙虾Pacifastacus leniusculus是一个完善的模型,用于研究无脊椎动物的免疫系统。在该物种中已经有许多重要的发现,以及与凝血反应,造血,预防烯氧化酶激活系统,甲壳动物免疫细胞的功能和病原体识别有关的其他发现。在本文中,对这项工作做出了少量贡献,重点是小龙虾细胞防御反应对真菌模式识别蛋白β-1,3, - 葡聚糖和对卵菌的反应,这是导致小龙虾ppague的病原体的类型。通过将血细胞中的蛋白质组学反应映射到β-1,3, - 葡萄糖,然后更详细地研究一些鉴定出的蛋白质,它使我们更接近了解这些动物如何在不依赖适应性免疫的而抗真菌感染的情况下防御真菌感染。在注射laminarin,beta-1,3,-lucan后进行了血细胞的蛋白质组学筛查,并与对盐水注入和未注射的对照的反应进行了比较。与两个对照组相比,三种蛋白质特异于椎板蛋白基:一种富含甘氨酸的肽,一种卡萨尔型蛋白酶抑制剂和一种推定的几丁质结合蛋白;以前尚未描述其中。其他三种蛋白质在盐水和拉米那林组中都上调:一种无脊椎动物型(I-type)溶菌酶,一个甲壳类和化妆店。详细研究了富含甘氨酸的肽和I型溶菌酶在免疫和伤害反应中的潜在功能。发现该肽在几个组织中表达,并且具有针对小龙虾病原体吞咽肌的特异性活性,对任何其他经过测试过的Oomycete,真菌或细菌没有影响。I-type溶菌酶(PL-丽丽)是穆拉米德酶缺乏的,因此可能不参与抗菌防御,能够破坏由小龙虾凝结蛋白和经云丘脑酶形成的凝块。该结果表明甲壳类动物中穆拉米酶缺陷型I-type溶菌酶可能有新功能。还进行了一项单细胞RNA测序研究,以研究Leniusculus假单胞菌中的血细胞和造血干细胞的类型,其结果表明颗粒,半颗粒,透明质酸,透明透明和造血细胞之间存在几种潜在的亚型。
一、昆虫形态学 昆虫体壁结构、构造和形态;口器、触角及其类型和功能;翅膀:构造和形态、脉络、翅膀连接装置和飞行机制;足:构造和形态。 胚胎后发育。昆虫目中未成熟阶段的类型,卵、若虫/幼虫和蛹的形态,未成熟阶段对于害虫管理的意义。 二、昆虫解剖学和生理学 外皮生理学、蜕皮、角质层化学、几丁质的生物合成;生长、激素控制、变态和休眠期;信息素的分泌、传递、感知和接收。昆虫消化、循环、呼吸、排泄、繁殖、分泌(外分泌腺和内分泌腺)和神经冲动传递的生理学和机制。昆虫营养的重要性——维生素、蛋白质、氨基酸、碳水化合物、脂质、矿物质和其他食物成分的作用;细胞外和细胞内微生物及其在生理学中的作用;人工饲料。III. 昆虫分类学 昆虫目和其中所含的具有经济价值的科的区别性状、一般生物学、习性和栖息地。弹尾目、原尾目、双尾目。昆虫纲:无翅亚纲——古颌目、缨尾目。亚纲:有翅亚纲,古翅目——蜻蜓目和蜉蝣目。门:新翅目:亚门:直翅目和蜉蝣目(=小翅目:蜉蝣目、蜉蝣目、等翅目、螳螂目、蝼蛄目、革翅目、直翅目、竹节虫目、螳螂目、茧蜂目、蟠翅目),亚门:半翅目(=副翅目):伪翅目、虱目、缨翅目和半翅目。昆虫目及其所含重要经济科的鉴别特征、一般生物学、习性和栖息地(续)。新翅目亚门,脉翅目组-鞘翅目:捻翅目、大翅目、尖翅目、脉翅目和鞘翅目,全翅目组长翅目、蚤目、双翅目、毛翅目、鳞翅目,膜翅目组:膜翅目。IV. 昆虫生态学丰度的基本概念-模型与现实世界。种群增长基本模型-指数与逻辑模型。离散与连续增长模型。概念
你有没有想过孔雀羽毛的鲜艳蓝色或甲虫身上闪闪发光的金属几丁质?这些自然奇观就是结构色的例子——微观结构产生鲜艳持久色调的现象。受到这些奇迹的启发,日本的一个研究小组一直在探索结构色。他们早期的工作发现,用黑色素颗粒制备结构色材料模仿了孔雀羽毛的着色机制。在此基础上,该团队着手开发一种涂层材料,利用黑色素颗粒捕捉结构色的光彩,即使从不同角度观看也能产生非彩虹色。研究小组包括日本千叶大学理工学院的 Michinari Kohri 教授和 Yui Maejima 女士,他们与武田胶体技术咨询有限公司的 Shin-ichi Takeda 博士和国家材料科学研究所的 Hiroshi Fudouzi 博士合作。他们的研究成果于 2024 年 12 月 18 日发表在《大分子反应工程》上。Kohri 博士描述了他进行这项研究的动机,“多年来,我们一直在研究受自然生物启发的基于黑色素的结构色材料。我们的动机是通过开发快速创造结构色并添加防水等功能特性的方法,使这些材料更加实用。” 为了实现这一目标,该团队准备了三种不同直径的聚苯乙烯颗粒。然后,他们添加了一层聚多巴胺(改性黑色素颗粒),然后通过迈克尔加成反应添加具有疏水性的具有 18 个碳原子的烷基(十八烷基)。在该反应中,带负电荷的化学基团添加到 α,β-不饱和羰基化合物中,以引入增强防水性的疏水基团。这是在不依赖疏水性但会引起重大环境问题的氟化合物的情况下实现的。使用时域核磁共振 (TD-NMR) 方法确认了颗粒的疏水性。处理完颗粒后,它们会分散在己烷中,从而可以快速高效地应用于玻璃和三聚氰胺层压板等基材上。干燥后,涂层的接触角超过 160 度,色调单一,表面自洁,呈现出荷叶效应,水滴在材料上形成水珠并滚落,不会留下残留物。研究发现,用十八烷基涂层获得的疏水性黑色素颗粒的疏水性几乎与用氟化合物涂层的颗粒相同,而氟化合物具有高疏水性。第一作者 Maejima 女士强调了这项研究的独特发现,她指出,“我们发现,通过将粒子表面的疏水性与粒子的分级组装结构相结合,可以实现超疏水结构彩色涂层,而这一切只需几分钟即可完成。”该团队专注于创建一种简单且可扩展的方法,确保涂层可以在几分钟内完成,而无需复杂的设备或工艺。前岛女士评论了他们发现的实用性:“这项技术有可能成为下一代涂层材料,非常适合墙纸或户外表面等应用,而无需依赖会随着时间而褪色的颜料。它的简单性和效率使其非常适合工业用途。”
手指研究表明,对老年人进行多域干预 - (饮食,运动,认知训练和强化血管管理)改善了认知。这是一个非常密集且复杂的方案。在糖尿病患者中,患阿尔茨海默氏病的风险更大。糖尿病中的多域干预研究很少。我们希望研究糖尿病患者基于手指研究的多域新颖干预措施是否可以接受,以及这种干预是否可以改善身心健康和心理健康和认知。我们希望测试代表性当地人口中多域干预的可行性,因此几丁质呼叫为我们提供了在Sligo和Enniskillen进行跨境研究的绝佳机会。这将是一年的试点研究。我们做了什么?我们招募了生活在两个跨境站点的糖尿病患者,即Sligo大学医院(流域Sligo/Leitrim/West Cavan)和西南地区医院(SWAH捕捉Tyrone/Fermanagh)。参与者被随机分配以继续其通常的糖尿病护理或接受多域干预。干预小组将在头四个月内接受一个密集的计划,然后在接下来的两个月内收到一些提醒,然后在接下来的六个月内继续没有提醒。因此,我们能够根据糖尿病患者认为可以接受并且可以做的事情来修改我们的设计。因此,该研究持续了六个月,而不是12个月。为了确保这项研究是为我们当地人口设计的,我们首先根据手指制定了研究方案,然后咨询了Enniskillen和Sligo的糖尿病患者的群体,以了解他们的意见。我们计划从两个地点招募140人,一个在斯莱戈(70),一个在恩尼斯基林(70)中。Please refer to our qualitative study for more information, available at: A qualitative study to inform adaptations to a brain health intervention for older adults with type 2 diabetes living in rural regions of Ireland - PubMed (nih.gov) Unfortunately, as the study was due to start, Covid-19 arrived and we had to modify the protocol to ensure that it was acceptable to participants and safe to deliver during the pandemic.由于Covid-19造成的延迟,该研究必须缩短,并且还需要缩短招募的时间。在7个月内而不是计划的两年中,招募到研究的总数为52。我们得到了什么答案?由于这是一项可行性研究,每月6-7名参与者的招聘率超过了设定的每月目标,这非常令人鼓舞。此外,大多数人在六个月时以81%的总体保留率完成了这项研究,并且类似于糖尿病患者的其他生活方式干预措施。两组在基线时匹配。在四个月时,干预组的心理健康评分和饮食评分有所提高。在六个月时,精神和身体健康评分和饮食评分得到了提高。参加研究的经验得到了高度评价,大多数参与者报告说,他们将向亲朋好友推荐该计划。总体而言,与参与者的访谈揭示了有关干预措施可接受的有用反馈。参与者通常发现饮食和运动的变化比执行计算机化的认知培训计划更容易。