DeepMind 团队于2020 年12 月发布的一种人工智能蛋白质结构预测算法AlphaFold2,被 认为具有人工智能领域里程碑性意义,解决了生物学界长达50 年的蛋白质空间结构预测 难题,改变了此前几乎只能使用X 射线晶体学和冷冻电子显微镜等实验技术确定蛋白质结 构的现状。它的原理基于最先进的深度学习算法以及进化中蛋白质结构的守恒。它使用了 大量的蛋白质序列和结构数据进行训练(如MGnify 和UniRef90 数据库、 BFD 数据库), 并 使用了一个新的深度神经网络构架,该网络被训练为通过利用同源蛋白质和多序列比 对的信息从氨基酸序列生成蛋白质结构。 DeepMind 公司与欧洲生物信息研究所(EMBL-EBI) 的合作团队已经使用AlphaFold2 成功预测出超过100 万个物种的2.14 亿个蛋白质结构, 几乎涵盖了地球上所有已知蛋白质。这一成果标志着AlphaFold2 在结构生物学领域的突 破,因为这些预测结果中有大约35%的结构具有高精度,达到了实验手段获取的结构精度, 而大约80%的结构可靠性足以用于多项后续分析。这将有助于深入理解蛋白质的结构和功 能,为生命科学领域的研究提供更多的线索和解决方案。 AlphaFold2 应用范围广泛,未来 可能被应用于结构生物学、药物发现、蛋白质设计、靶点预测、蛋白质功能预测、蛋白质 -蛋白质相互作用、生物学作用机制等。
。CC-BY-NC-ND 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2021 年 6 月 29 日发布。;https://doi.org/10.1101/2021.06.28.450169 doi:bioRxiv 预印本
海滩,假期和夏令营,而不是犹太教堂节目。好吧,直到今年 - 这些事情几乎不存在!这是我坐在地板上,就在那儿,然后登录Zoom Tisha b'av纪念活动,因为太阳落在我们的寺庙Isaiah庙上。在我去过TI的时候,每年都有一些纪念Tisha b'av的东西。雷切尔·彼得罗夫·凯斯勒(Rachel Petroff Kessler)通常取得领先,而拉比·普洛特金(Rabbi Plotkin)或我参加了。通常,这个日期与我在哈拉姆营的教师数周相吻合,尽管我记得我在场时,Tisha B'Av的人群通常是会众的5-10名成员。再次,这不是改革犹太习俗的最普遍的。这就是为什么我惊讶地登录变焦并在网上找到近30个屏幕。谁知道使我们变得更传统的大流行?!?坐在地面上的习俗与湿婆神的直接送葬者的实践相连,坐在低矮的凳子上,甚至是烛光的裸露地板。三年前,当我的家人一起在以色列一起旅行并住在耶路撒冷时,我的经历立即使我回到了Tisha b'av。Lev和我走到Kotel的南墙区域,聚集在平等的读物中,对寺庙综合体的唯一地点组织了哀叹卷轴,以允许男人和女人一起祈祷。当我们开始高呼祈祷并研究文本时,这种感觉很强大。在传统实践中为Tisha B'Av辩论。在那里,在耶路撒冷月亮下的一个晴朗的夜晚,我们坐在巨大的建筑石头上,回到了第二座寺庙,在同一地点倒下,在过去的两千年中等待救赎。也许是靠在我们圣座的耶路撒冷石头上的经历;也许是孤立的感觉,一个人独自在一个我更喜欢与社区分享的空间内。也许这是几个月隔离和焦虑的情绪,当时(如今)没有明显的迹象。Rachel一如既往地做出了一件出色的工作,在仅保留在这一天的传统Trope系统的独特节奏中,诵经哀叹经文。,但正是阅读的设置使我措手不及。阅读这本卷轴时,讲述了一个破坏和祸患的故事,一个人如何祝福阅读?规范性实践表明,对阅读没有任何祝福。2例外是在我们在Purim上阅读Megillat Esther时,从手写的犹太洁食卷轴上读取EICHA的例外。And while the content of the blessing is not outlined, it likely is — as appeared in our book for Tisha B'Av — Baruch Atah Adonai, Eloheynu Melech HaOlam, Asher Kid'shanu BeMitzvotav VeTzivanu Al Mikra Megillah — "We praise You, O God, Sovereign of existence, who has hallowed our lives with commandments and commanded us to read this滚动。” 3确实不是最令人回味的祝福,但这是明确的案子 - 阅读这些词是一个示威
Cavin蛋白对于小屋的生物发生和功能至关重要。在这里,我们通过分析两个脊椎动物系统,小鼠和斑马鱼来确定肌肉特异性成分Cavin4的作用。在这两个模型中,cavin4局部定位于t管,而cavin4的丢失导致了异常的t-小管成熟。在具有重复的cavin4旁系同源物的斑马鱼中,cavin4b被证明可以直接与t-pubule - 相关的棒域蛋白Bin1相互作用。cavin4a和cavin4b的丧失导致互连的小口腔在T管中的异常积累,富含Caveolin-3的碎片T型细胞网络以及机械刺激后的Ca 2+响应受损。,我们提出了Cavin4在发育早期重塑T纤维膜中的作用,这是通过将洞穴成分从t-管回收到肌膜的作用。这将产生一个缺乏Caveolae的稳定的T-pubule结构域,这对于T-pule函数至关重要。
抽象的人群物种,尤其是trichocarpa,长期以来一直是基因组研究的模型树,这是由于完全测序的基因组。然而,高杂合性和重复区域的存在,包括丝粒和核糖体RNA基因簇,剩下了59个未解决的间隙,占三分法P. trichocarpa基因组的3.32%。在这项研究中,改进了愈伤组织诱导方法,以从P. ussuriensis花药中得出双倍的单倍体(DH)愈伤组织。利用长阅读测序,我们成功地组装了一个几乎没有间隙的,端粒到telomere(T2T)P。ussuriensis基因组,跨越了412.13 MB。该基因组组件仅包含7个间隙,其重叠n50长度为19.50 MB。注释显示该基因组中有34,953个蛋白质编码基因,比trichocarpa多465个。值得注意的是,中心区域的特征是高阶重复序列,我们在所有DH基因组染色体中鉴定了和注释的中心粒区域,这是杨树的第一个。衍生的DH基因组表现出与毛thocarpa的高共线性,并显着填补了后者基因组中存在的空白。此T2T P. ussuriensis参考基因组不仅会增强我们对基因组结构的理解,并在杨树属内的功能增强了我们的功能,而且还为杨树基因组和进化研究提供了宝贵的资源。
患有严重肢体障碍,如完全闭锁状态的肌萎缩侧索硬化症 (ALS) (CLIS) 的人无法向他人表达自己的想法。为了解决这个问题,已经开发了许多脑机接口 (BCI) 系统,但它们并未被证明足以满足 CLIS 的要求。在本文中,我们提出了一种词语交流系统:带有护理人员辅助的 BCI,其中护理人员可以积极帮助患者表达单词。我们在此报告,四名几乎 CLIS 中的 ALS 患者和一名 CLIS 中的 ALS 患者成功地用自己的单词(日语)回答无法“是/否”回答的 wh 问题。每个受试者使用基于近红外光的“是/否”交流辅助工具,按顺序选择他或她想要表达的单词中包含的元音(最多三个)。然后,护理人员将所选元音输入到包含元音条目的词典中,词典会返回包含这些元音的候选单词。如果没有合适的单词,护理人员会更改一个元音并重新搜索或从头开始。当选择了合适的单词时,受试者通过“是/否”回答进行确认。三名受试者对所选单词至少有八次中有六次表示“是”(统计测量的可靠性为 91.0%),一名受试者(在 CLIS 中)八次中有五次表示“是”(74.6%),一名受试者四次中有三次表示“是”(81.3%)。因此,我们朝着为此类患者建立实用的词语交流系统迈出了第一步。
在过去的几十年中,空腔量子电动力学领域的进步以及电路量子电动力学为强烈和共计耦合到光模式的物质系统铺平了道路。这些实验突破使实现和研究范式理论模型(如Rabi,Tavis-Cummings和Dicke模型)在实验室中具有强烈的相互作用[4-11]。使用这些工具,一个基本问题是光与物质之间的相互作用如何相互影响,改变了分离的(潜在复杂)单个部分的特性,例如可观察结果,局部相互作用或相变的位置[12-22]。范式的光丝系统之一是Dicke模型,在光和物质部分上的设置最少[23,24]。该模型由n个单个自旋-1 / 2颗粒组成,这些粒子单独耦合到单个空腔模式。hepp和lieb显示了热力学极限n→∞可以通过Bogoliubov转换来分析求解,并具有从正常到超级阶段的二阶相变,其基态下具有非变化的光子密度[24]。虽然DICKE模型的一部分是由任意数量的旋转组成的,但在没有光结合相互作用的情况下,它会分解为非相互作用的问题,因为局部自由度仅通过腔体耦合,从而使其易于解决。一个典型的例子是Dicke-asision模型,其中最近的邻居旋转之间存在额外的ISININ相互作用。首先,在第二节。sec。sec。To make the composite system more interesting, various generalizations for the Dicke model were proposed and discussed, like more complex local spin structures [ 25 ] , multi-mode cavities [ 24 , 26 , 27 ] , non-Hermitian generalizations [ 28 ] , open systems [ 29 , 30 ] , altered light- matter interactions [ 31 , 32 ] , non-equilibrium systems [ 33 ] , and added matter-matter interac- tions between the spins [ 2 , 34,35]。使用均值场和自由度自由度的经典近似,Zhang等人。在物质部分[2]中找到了包括抗铁磁相的抗铁磁相互作用的丰富相图,其中包括抗铁磁相和顺磁相[2]。然而,使用定量数值技术,在位置以及1D中的顺序中发现了相变的偏差[1,36]。在这项工作中,我们通过考虑对物质部分的更具概括的设置来详细说明,包括长距离跳跃和关联过程,并将其耦合到单个光模式。这使我们能够研究光 - 物质和物质 - 耦合引起的相关性与效果之间的相互作用。将自己限制在与消失的光质相互作用的情况下,我们通过将其映射到有效的dicke模型来建立了该模型低能部分的分析解决方案。这使我们能够在分析的非抗抑制阶段研究这种广义的dicke模型的低覆兴激励,包括缝隙的截止,可能诱导二阶相变。本文的结构如下。2我们介绍了一般框架工作,包括广义模型和推导有效DICKE模型的先决条件。后者是在亚基中完成的。2.2和2.3,首先给出一些物理直觉,如何解决系统,然后在操作员级别上进行一般推导。3,我们将一般发现应用于Dicke-asising模型,作为示例性情况。我们比较了在热力学极限中获得的结果,与有限系统上的精确对角线化(ED)和串联扩展方法PCST ++ [3]相比,以增强有效模型的有效性。sec。 4我们得出结论,并为潜在的研究方向提供前景。sec。4我们得出结论,并为潜在的研究方向提供前景。
本文介绍了实施生物量燃料的区域供暖系统(DHS),这是深度能量翻新演习的一部分,以实现具有最低二氧化碳排放碳的气候溶解校园。该案例研究是为西班牙普通大小的大学的瓦拉多利德大学进行的,具有大陆天气的气氛。在翻新之前,不同的构件具有广泛的化石燃料消耗水平,用于供暖和家庭热水在60至430 kWh/m2Å年之间。该集中式供暖系统的应用允许根据西班牙标准达到100 - 120 kWh/m 2的接近零能量建筑物(NZEB)的最低阈值。这些值对应于在大陆天气条件下的办公室中的最大欧洲。这项全面研究的结果表明,由于拟议的策略,这19座建筑物中有15座达到了NZEB目标。与原始的化石燃料动力锅炉相比,总体二氧化碳排放量下降了92.69%,从而使二氧化碳EMIS sions降低至1.57 kgco 2 /m2Å。因此,可以证明,通过可再生能源DHS的深度能量翻新策略具有在大陆天气条件下为大学实现NZEB的努力。
住友理工株式会社(总部:名古屋市中村区;总裁兼首席执行官:清水一志;以下简称“住友理工”)与 JFE 工程集团旗下的 Urban Energy Corporation(总部:横滨市鹤见区;总裁首席执行官:小林淳;以下简称“Urban Energy”)、J&T Recycling Corporation(总部:横滨市鹤见区;总裁兼首席执行官:长谷场博之;以下简称“J&T Recycling”)及其子公司 Bios Komaki Company Limited(总部:爱知县小牧市;总裁兼代表董事:广部智树;以下简称“Bios”)合作,自 6 月起将住友理工研究所“Technopia”(爱知县小牧市)使用的所有电力转换为大量可再生能源,作为实现碳中和的努力之一。