密码学的悠久历史[1-6]。在20世纪之前,Cryptog-raphy被视为一种主要依靠个人技能构建或破坏代码的艺术,而无需进行适当的理论研究[7]。专注于信息的态度,众所周知,经典加密术可确保在不同情况下或间谍之间或间谍之间的不同情况下进行沟通。经典密码学的重要代表是换位密码,它重新排列了信息以隐藏原始含义。在20世纪初期,在哈里·奈奎斯特(Harry Nyquist),拉尔夫·哈特利(Ralph Hartley)和克劳德·香农(Claude Shannon)建立了信息理论之后,对加密 - 拉皮(Cryptog-raphy)的研究开始利用数学工具。密码学也成为工程的一个分支,尤其是在使用计算机之后,允许数据加密。现代密码学的两个主要方案包括对称(私钥)加密章节,例如,数据加密标准(DES)[14]和高级加密标准(AES)[15]和非对称(公共键)密码学,例如RSA AlgorithM [16]。对称密码学取决于通信方(Alice和Bob)之间的共享密钥,而在非对称加密术中,加密密钥与解密密钥不同。通常,对称加密图比不对称的密码学更有效,具有更简洁的设计,但是在共享键的安全分布方面,它具有困难。另一方面,使用公共密钥和私钥进行加密和解密的非对称加密术,分别依赖于称为单向函数的数学问题,这些函数从一个方向(公共钥匙)[17] [17] [17] [17] [17],并且在如今更广泛地用于避免在Symetric Crysetric Crystric Crypectrics中避免使用安全级别的Safe Safe Page of Secy safe Safe Pression。然而,随着量子计算的快速开发及其在解决常规单向函数方面的潜力,可以使用Shor的算法[20]和Grover's算法[21]中断当前的加密系统[19] [19];因此,在信息安全的新时代,QKD现在变得越来越重要。与当今使用的非对称加密术不同,QKD基于对称密码学,保证了用量子力学定律确保秘密键的安全分布,即测量过程通常会扰乱
s.no单位主题10通用波属性全单元11声音全单元12电磁频谱全单元13几何光学光学全单元14静电静电15电流1.电流2。电动力3。欧姆定律4。系列和电阻的平行组合
PHY 2200。物理学 2。(3 小时)提供为期两学期的代数物理学入门课程的第二学期。强调电和热力学的基本概念和原理。介绍温度、物质的动力学理论、热、热力学定律、电和库仑定律。涵盖的主题包括电荷和场、电势、电流电路、电容、磁力和场以及电磁感应。涵盖的其他主题包括交流电路、磁性、电磁波、光的性质和几何光学。
在许多物理学领域中,找到在给定物体中随机分布的平均和弦长度是一个自然的问题。从数学角度来看,这是一个看似复杂的任务,因为人们应该考虑线的空间和角度分布以及它们如何相交对象的表面。对于凸形的身体,答案令人惊讶地简单,由平均和弦长度定理给出,该定理已有一个多世纪[1]。它指出,平均和弦长度⟨c⟩与物体的形状无关,并且仅取决于体积V与表面积的比例为⟨= 4 v /。从各种角度得到证明[2-4]。最近才表明,该定理可以进一步推广到扩散物体中随机行走的研究。平均路径长度定理[5]指出,平均路径长度仍然简单地是⟨l⟩= 4 v /;这与介质的形状和散射 /扩散特性无关。有效性延伸到许多领域,因为它对物体内部的任何随机步行都是有效的,并且与封闭散射介质中的几何光学元件特别相关。该定理的一个重要条件是,入口点和初始方向是均匀和各向同性分布的,在光学中,这与兰伯特的照明相当[2]。路径长度分布和平均路径长度是许多光学系统设计的核心,可以使用射线光学描述。它们可用于计算吸收和散射培养基的光学特性[6,7],药物粉末中的折射颗粒培养基[8],用于太阳能电池设计[9-11],随机激光[12]和集成球[13,14]。射线追踪也可以与衍射效应结合使用,以计算大型粒子的电磁散射特性,例如几何光学近似和物理光学模型[15 - 20]或
SI 单位。有效数字。波:强度、叠加、干涉、驻波、共振、拍频、多普勒。几何光学:反射、折射、镜子、薄透镜、仪器。物理光学:杨氏干涉、相干性、衍射、偏振。流体静力学和动力学:密度、压力、阿基米德原理、连续性、伯努利。热:温度、比热、膨胀、热传递。矢量。点的运动学:相对运动、抛射运动和圆周运动。动力学:牛顿定律、摩擦力。功:点质量、气体(理想气体定律)、引力、弹簧、功率。动能:保守力、引力、弹簧。能量守恒。动量守恒。冲量和碰撞。粒子系统:质心、牛顿定律。旋转:扭矩、角动量守恒、平衡、重心。
1430113医学科学物理学3-0:3此入门课程涵盖了生命科学物理学的主题,尤其是医学,药房和其他涉及的健康领域。它讨论了可以定量分析的生物系统,以及如何通过物理或工程分析来帮助生命科学。该课程包括物理学与生物学/医学之间边界上的问题,示例和讨论的集合。回顾力学,流体运动,热力学和热力学,波浪和声音,电力,电力及其在生物学和医学,光学,原子的性质,原子光谱,核物理学和放射性,生物学和医学中的X射线应用,X射线应用中的基本概念。基本物理概念在医学科学中的应用,包括力学,流体,热力学和热力学,波浪和声音,电力和磁性,几何光学,原子光谱和辐射。先决条件:无。
模块代码 模块标题 EC 1 2 3 4 AP3061 声学、弹性波和电磁波 6 AP3091 基本粒子 6 AP3113 量子光学 6 AP3122 高级光学成像 6 AP3132 高级数字图像处理 6 AP3152 光刻光学 6 AP3222 纳米技术 6 AP3242 激光器和光电探测器 3 AP3252 纳米级电子显微镜表征 3 AP3311 用于研究结构和动力学的中子、X 射线和正电子 6 AP3352 核科学与工程概论 6 AP3382 高级光子学 6 AP3391 几何光学 6 AP3401 带电粒子光学简介 6 AP3531 声学成像 6 AP3412 光学实验技术 3 AP3701 亚毫米波和太赫兹物理与应用 3 AE4896 空间仪器 4 EE4745 太赫兹超导天文仪器 5 ME46310 光机电一体化 4 SC42030 高分辨率成像控制 3 SC42065 自适应光学设计项目 3
用于定向能和自由空间光通信应用的激光束在通过大气传播时可能会因光学湍流而严重扭曲。这些扭曲主要源于大气边界层,该边界层通常延伸至约 2 公里高,包含大气质量的 75%。其影响包括光束偏移、光束增宽和辐照度波动。自适应光学技术的使用可以减轻湍流的影响,此类系统在天文应用中广为人知,但在定向能应用中的实现和性能仍然不太为人所知。任何自适应光学系统的目标都是通过使用波前传感器测量误差、计算适当的校正并将此校正应用于可变形镜来消除光路变化导致的光波前扭曲。为了满足时间带宽要求,该反馈回路每秒执行数百次。要确定自适应光学系统的特性,必须模拟大气湍流对波前的影响。激光系统性能的评估取决于传播预测代码中使用的大气模型的精度。经过几十年的研究,一些分析理论例如几何光学 1 、Rytov方法和马尔可夫近似 2-4 已经发展起来,用于计算激光束传播的特性。但这些方法在某些条件下是近似的,因此它们的适用性有限,并且闪烁统计数据的理论计算非常困难,特别是当强度波动变大时。因此,开发了数值方法来更真实地表示大气湍流对激光束传播的影响。这些方法被称为光束传播方法 5 。这些方法的其他名称是分步傅里叶技术 6 和随机相位屏方法 7,8 。这里我们介绍激光束传播代码 LAtmoSim,它使我们能够评估大气对激光束波前的影响,并通过使用上述方法确定 AO 系统的设计参数。在本文中,我们还介绍了预测大气湍流强度的工作成果。光学湍流强度的定量测量称为折射率结构参数 C n
学期 - I PH-101物理-I 1。Special Theory of Relativity: Frame of Reference, Galilean Transformation, Inertial and Non-inertial frames, Postulates of Special Theory of Relativity, Michelson-Morley Experiment, Lorentz transformation of space and time, Length contraction, Time dilation, Simultaneity in relativity theory, Addition of velocities, Relativistic dynamics, Variation of mass with velocity, Equivalence of mass and energy.2。热物理学:Maxwell-Boltzmann分子速度的分布定律,R.M.S.S.S的评估以及平均速度和最可能的速度,平均自由路径,运输现象。3。几何光学:组合薄镜头,同轴光学系统的主要点,厚镜头,基数的位置和特性,牛顿公式,图像的图形结构。眼部碎片,修复点。光学仪器光谱计(棱镜和光栅),六分。4。物理光学:观察干扰的干扰条件。条纹的连贯性和可见性。使用菲涅尔的二倍主义生产干涉条纹和波长的测定。米其逊干涉仪及其用途。由于薄膜引起的干扰。楔形胶片。牛顿的戒指。衍射-Frasnel的衍射,菲涅耳的半个周期区域,区域板,Fraunhofer的衍射,单缝,双缝。平面光栅理论。主最大值的宽度。瑞利的决议标准。解决棱镜和光栅的能力。通过反射极化。极化 - 非极化,极化和部分极化的灯光。单轴晶体,宝丽来,Huygen的双重折射理论的双重折射。半波和四分之一波板。生产和分析平面椭圆形和圆形偏振光。光学活动。菲涅尔的光旋转理论,特定旋转,比夸夸兹和劳伦斯半阴影。5。全息图:基本原理,全息及其应用。6。激光器:刺激和自发发射,爱因斯坦系数,刺激和自发排放的相对贡献,种群反演,激光发射,红宝石和He-ne激光器,激光光的特征。7。声学:超声波的生产和检测,液体中速度的测量,超声处理的应用。建筑物的典范。参考文献1。Mechanics-D.S.Mathur 2。optics-a.k.ghatak 3。热力和热力学-Brijlal&Subramanium 4。热物理b.k.agarwal 4。振荡和波的物理学 - r.b.singh 5。工程物理-A.S.S.Vasudeva
•射线射线光学光学(几何(几何光学)光学):: Fermat的Fermat的Fermat的原理,原理,原理,携带携带和矩阵矩阵光学元件.. s l s l s l s l s l s l s l s l w o ti o ti o ti(i t f&g i g i g i g i s claverian scressic corterican s clave and clave scallice sclasic scallice scallice clave and clave wave wave wave wave( Beams) Beams): Scalar Scalar wave wave equation, equation, Helmholtz Helmholtz equation, equation, Superpostion Superpostion of of Waves, Waves, Interferometers, Interferometers, Paraxial Paraxial Wave Wave Equation, Equation, Gaussian Gaussian Beam Beam Solution, Solution, ABCD ABCD Law, Law, Hermite Hermite-Gaussian Gaussian Beams Beams.ABCD ABCD法律,法律,Hermite Hermite高斯高斯横梁。•激光激光物理物理学:轻度放大,放大,抽水计划,方案,增益系数,系数,系数,激光激光输出(CW(CW(CW和脉冲)脉冲)。声音大声疾呼,光学和非线性非线性光学元件• Electromagnetic Electromagnetic Optics Optics:: Maxwell Maxwell Equations Equations in in Vacuum Vacuum and and Dielectrics, Dielectrics, Monochromatic Monochromatic Waves, Waves, Plane Plane Waves, Waves, Polarization Polarization Ellipse, Ellipse, Jones Jones Formalism, Formalism, Reflection Reflection and and Refraction Refraction of of Light Light from from aa Boundary边界..•Fabry Fabry-孔孔洞腔::平面平面腔,腔,阻尼,阻尼,技巧,技巧,技巧,球形球形 - 镜面镜面腔,腔,稳定稳定和不稳定的不稳定型腔。光学光学涂层涂层设计•光子光子光学光学和光材料 - 物质材料相互作用::光子光子光子和光子光子流式流式材料材料属性属性,并模型模型光子光子和原子和原子和原子和原子流,以及流,材料,材料材料属性以及模型,模型,模型,模型,模型,光子,光子光子和型号。