1。灵活状态表示:节点可以表示带有特征的连续坐标2。 div>连续动作:图形可以扩展到新的2D位置3。连续的欧几里得对称性:2D上的几何图是(2) - 可转化
摘要。本文考虑了使用网络上具有奇点的双曲波动方程问题对大型经济系统 (LES) 进行建模的选项。制定了一个问题陈述,对外部环境突然变化的条件下的 BES 进行建模。通过引入稳定性系数,通过研究类似特征法形式的解,分析了BES在外部环境影响下被破坏的可能性。在这项工作中,Maxima 计算机代数包用于附加计算。关键词:微分方程经济问题建模、双曲方程、几何图、特征法
情境图(S图)合并了通过同时定位和映射(SLAM)将3D场景图的接近的几何模型合并到多层联合优化因子图中。作为一种优势,S-graph不仅是通过将几何图与一个图中的各种层次组织的语义界面及其拓扑关系相结合,因此更全面的机器人情境意识,还可以改善本地化的性能,并通过Exploit-exploit-exploit-neploit-neploit-opploit-依靠语义信息绘制。在本文中,我们介绍了基于视觉的S-Graphs版本,其中使用传统的视觉猛击(VSLAM)系统用于低级功能跟踪和映射。此外,该框架利用了ducial标记的潜力(可见以及我们最近引入的透明或完全看不见的标记)来编码有关环境及其内部对象的全面信息。标记有助于识别和绘制结构性的语义实体,包括环境中的墙壁和门,在全球参考中具有可靠的姿势,随后与包括走廊和房间在内的高级实体建立了有意义的关联。然而,除了包括语义实体外,还利用了公爵标记物施加的语义和几何约束来提高重建的地图的质量并减少本地化错误。使用腿部机器人收集的实际数据集上的实验结果表明,我们的框架在制作更丰富的多层分层图方面表现出色,并同时增强了机器人姿势精度。
我们考虑通过文本指导将几何细节添加到3D对象网格的问题。文本到3D生成建模已成功应用于计算机视觉[Poole等。2023;张等。2024],计算机图形[Khalid等。2022]和地理处理[Gao等。2023; Xu等。2024]应用。这些方法着重于直接从文本中生成3D网格[Poole等。2023; Wang等。2023]没有为用户提供控制输出形状粗糙结构的能力,从而限制了需要仔细控制生成过程的艺术家的实际实用性。其他方法着重于生成3D网格的纹理[Cao等。2023;理查森等。2023],但它们在几何形状上没有执行任何变化。虽然有一些方法[Gao等。2023; Metzer等。2023]向用户提供控制并能够修改给定形状的几何形状,这些方法通常很慢,因为它们依赖于昂贵的得分蒸馏采样[Poole等。2023]。在本文中,我们提出了一种创建3D对象与丰富几何细节的方法,同时允许用户保留对全局形状结构(通过输入粗网格)和本地几何细节(通过输入文本提示)的控制。随着文本引导的生成方法的最新成功[Metzer等。2023; Poole等。2023;理查森等。2023; Wang等。2024;张等。2023],我们在大型预训练的文本对图模型上构建了我们的方法[Rombach等。2022]并使用语言指导几何细节的生成。我们的公式不需要配对的粗几何图和细几何训练数据,而是使用大型预训练的文本对图像模型作为监督,以指导通过可区分的渲染器添加几何细节的过程。我们的主要见解源于以下事实:训练以深度信息指导的文本对图像生成的模型[Mou等。2023]最终创建包含其他几何提示的图像。如图2所示,这些提示是如此突出,即使是现成的正常估计模型也可以提取它们。即,即使小鼠图像仅从三个球体产生,其正常估计(最右图像)显示了与描绘眼睛,鼻子和耳朵的表面相对应的正态。但是,此过程只能从单个角度创建可见的细节,而我们希望将细节添加到给定形状的整个可见表面。我们的方法在三个阶段中将几何详细信息添加到输入网格中。第一阶段基于输入文本提示和输入粗网格生成单视RGB图像。此RGB图像可以看作是如何将其添加到输入网格的几何详细信息的预览。第二阶段根据第一阶段和输入粗网格的单视输出进行多视图生成。第三阶段根据第二阶段的多视图生成来完善输入网格的几何细节。由于每个阶段的输出是非提交的,人类可理解的图像或效果图,因此此属性允许在完成之前的早期瞬间,以便用户决定更改参数或返回并更改/修改输入。此外,前两个阶段仅涉及运行预训练网络的推断,最后阶段直接在网格上运行。每个阶段都可以在几秒钟内完成,因此允许我们的方法用于支持