在人类的空间意识中,3-D投影几何结构结构信息整合和行动计划,通过视角在内部表示空间内采取。不同观点与世界模型相关的方式并改变了特定的感知和想象方案。在数学中,这种转换的收集对应于一个“群体”,其“动作”表征了空间的几何形状。将世界模型与群体结构相关联,可以捕获不同的代理人的空间意识和负担能力方案。我们将小组动作用作特殊的策略,以进行视角依赖控制。我们探讨了这种几何结构如何影响代理的行为,并比较了欧几里得与投射组如何在主动推断,好奇心和探索行为中对认知价值作用。我们正式演示并模拟了各组如何在简单的搜索任务中诱导不同的行为。根据框架的选择,投影组的非线性放大信息会转化认识价值,从而为感兴趣的对象产生了方法的行为。代理商世界模型中的投射组结构包含了射影的意识模型,该模型已知可以捕获意识的关键特征。另一方面,欧几里得群体对认知价值没有影响:没有动作比最初的闲置状态更好。在构造代理的内部表示形式时,我们展示了几何形状如何在信息集成和行动计划中起关键作用。关键字:几何世界模型;勘探;体现认知科学;认知建模;感知效果耦合
我的一位前教授曾经将一本关于差异几何学的流行教科书描述为“厕所阅读”。诚然,他使用了更多粗略的术语。此描述意味着文字很容易访问,以至于他可以在经常浴室时阅读这本书。该描述并不意味着称赞。。。这本简短的书旨在是“厕所阅读”。差异几何形状经常被抽象地呈现,而驱动直觉隐藏得很好。相反,我试图使此文本尽可能容易地消化。。。也就是说,我认为您在机器学习和与此领域相关的标准数学工具方面具有一定的经验。也就是说,您应该熟悉基本演算,线性代数和概率理论。
摘要 - 低成本,低功率和高效率集成系统的需求增加使设计射频(RF)模拟电路变得更加复杂。使用多指MOSFET是一种优化电路性能的有吸引力的技术。与单指MOSFET相比,它降低了硅区域,门电阻和寄生电容,这主要影响高频和噪声性能。但是,选择最佳手指数量仍然是一个具有挑战性的问题。本文研究了手指的数量(NF)对晶体管参数的影响,并评估其对RF收发器中多个关键功能的影响。该研究专门关注NF的函数,该研究在130 nm CMOS技术中实施的民用RF电路的性能。首先,提出了差异RF带通滤波器的设计。结果表明,使用多指MOSFET会导致芯片面积减少66.5%,功率消耗量增加了15%,而噪声图则减少了43%,与常规方法相比,线性性和频率范围的改善。然后,根据NF的不同配置,已经设计了一种在2.4 GHz左右运行的无电感LC-VCO和LNA。获得的结果通过应用多手指优化显示了该区域,功率增益,频率和噪声性能的改善,并表明保持NF的增加可以降低稳定性,线性和功耗。还通过蒙特卡洛模拟测试了所提出的电路,从而证实了它们的稳健性和不匹配变化。不同提议的电路和NF配置之间的详细分析比较证明,当NF较低时,MF技术是可靠的。
†这些作者同样贡献了 *对应:bennie.lemmens@ki.se摘要DNA复制对于生活至关重要,并确保了遗传信息的准确传播,这在癌症发育和化学疗法中受到了严重干扰。虽然DNA复制在时间和空间中受到严格控制,但缺乏可视化和量化3D人类细胞内复制动力学的方法。在这里,我们引入了3D空间测定,以进行复制动力学(3D Spark),这是一种实现DNA合成动力学的纳米级分析的方法。3D Spark与超分辨率显微镜相结合,以检测,分类和量化单细胞中的复制纳米结构。通过将免疫荧光技术与基于化学的新生DNA标记和荧光核苷酸衍生物转染的转染相结合,我们绘制了与已建立的复制蛋白,局部RNA-蛋白辅助蛋白或大型亚核域相关的多色DNA合成事件。我们证明了化学治疗,CDC6癌基因表达和染色质组织者RIF1的尺寸,相对丰度和空间排列的定量变化。3D Spark的灵活性,精度和模块化设计有助于弥合空间细胞生物学,基因组学和基于2D纤维的健康和疾病的复制研究。引言DNA复制是一个基本的生物学过程,对于细胞增殖,基因组稳定性和整体生物体健康至关重要。它确保每个细胞周期一次完全,准确地重复基因组,并遵循定义的时间和空间顺序,称为复制时序(RT)程序。该程序在脊椎动物物种中是高度保守的(Masai和Foiani,2017年),并引起在早期,中期和晚期S-相细胞中观察到的特征复制焦点模式
摘要。在金属材料的定向能量沉积 (DED) 工艺中,线激光增材制造 (WLAM) 的特点是使用激光束熔化金属线并产生焊珠。重叠焊珠的连续沉积产生体积以获得零件。因此,控制焊珠的几何形状对于增材制造工艺至关重要。一些研究工作已经研究了这些几何形状以及主要制造参数对其尺寸的影响,但很少有研究进料方向或线角度的影响。此外,所有关于线角度的研究都是在横向进料和恒定激光方向下进行的。本文重点研究了同轴线进料的沉积头方向对焊珠几何形状的影响,其中有 3 束激光。以相对于水平基板的不同方向进行实验,并使用光学仪器测量外部轮廓,以提取平均轮廓和特征尺寸。结果表明,头部绕其轴线旋转和横向倾斜会影响焊珠的高度、宽度和不对称性。
摘要。使用定向能量沉积 (DED) 工艺(例如电弧增材制造 (WAAM))制造零件时,需要确定沉积路径和操作参数(送丝速度、焊枪速度、能量)。虽然操作参数会影响制造的焊珠的几何形状,但沉积轨迹会影响这些焊珠排列以填充目标形状的方式。焊珠几何形状对热条件(难以准确管理)的强烈依赖性使得选择适当的参数变得复杂。可以通过多种方式解决该问题,本文提出了一种根据零件的当前状态(模拟或测量)和制造或几何约束确定轨迹和操作参数的方法。提出的方法分为两个阶段:
艺术家使用这些原始阵列来描绘世界,展示他们捕捉环境本质的效力,从而创建清洁,完整和精确的内容。同样,作为人类,我们具有衡量维度和空间关系的能力,例如并行性和正交性,只有我们的视线。此功能使我们能够通过结构复杂的环境(如室内走廊和停车场)进行肯定地导航,并将我们的生活空间简化为具有象征性表示的地图,如图1。几何原始物的简单性和效率(包括点,线条,曲线和飞机)一直使我着迷,因为它们具有出色的能力,可以以一种简约的方式代表我们世界的复杂性。因此,我的研究受到了激励,我一直相信
未来的飞机尺寸工具(FAST)是密歇根大学为早期概念飞机设计开发的基于MATLAB的开源软件。快速通过新颖的推进系统来促进传统和高级飞机配置的设计和分析,从而基于特定要求,所需的技术目标以及系统级别的目标来实现初步尺寸和性能评估。它已被用于NASA的电气化飞机推进和电气化动力总成飞行演示项目,以评估新型飞机概念,包括电气化商用货轮(notionility lockheed Martin LM-100J)和NASA的亚音速单单船尾发动机配置。本文介绍了快速的可视化软件包的开发,从而满足了整个尺寸过程中飞机设计的视觉表示的需求。集成的软件包提供了飞机外模线和推进架构的示意图的可视化。用户可以创建自定义的飞机几何形状或使用快速可用的预设。此外,随着飞机尺寸的过程的进行,可视化软件包会动态更新飞机的形状和尺寸,从而通过使设计师能够在早期设计阶段有效地可视化和完善其飞机概念来快速增强飞机。
6英国牛津大学精神病学系@correspording作者:Michal.wojcik@dpag.ox.ac.ac.uk Mark于2023年1月13日去世。。6英国牛津大学精神病学系@correspording作者:Michal.wojcik@dpag.ox.ac.ac.uk Mark于2023年1月13日去世。他不仅是一个有价值的同事,而且是我们许多人的朋友和导师。他的出色思想和有见地的贡献将被非常怀念。摘要。神经表示的几何形状与正在执行的任务之间的关系是神经科学1-6中的一个核心问题。灵长类动物的前额叶皮层(PFC)是在这方面的询问的主要重点,因为在不同的条件下,PFC可以用依赖过去经验7-13或经验的几何形状编码信息,或者是经验的3,14-16。一个假设是,PFC表示应从学习4,17,18的形式发展,从支持对所有可能的任务规则进行探索的格式到最小化任务 - iRrelevant特征的编码4,17,18的格式,并支持普遍性7,8。在这里,我们通过从头开始学习新规则(“ XOR规则”)时从PFC记录神经活动来测试这个想法。我们表明,PFC表示从高维,非线性和随机混合到低维和规则选择性的发展,与受约束优化的神经网络的预测一致。我们还发现,这种低维表示有助于将XOR规则概括为新的刺激集。这些结果表明,可以通过考虑在不同的学习阶段对这些表示形式的适应来调整以前对PFC表示形式的相互冲突。1a,低维)13。两个看似差异的说法表明,PFC神经活动应追踪低8-13,19或高维3,14-16的环境表示。传统上,有人提出PFC细胞适应了与任务相关的信息,从而导致低维神经活动13。这会导致人口显示结构化的选择性模式,如认知任务训练后通常观察到的那样(图一个对比的假设表明,PFC可能依赖于任务特征的高维,非线性混合表示
我们开发了一个深度学习框架,以估计仅从身体表面潜力和躯干几何形状的心脏表面电位,因此省略了有关心脏几何形状的信息。该框架基于图像到图像的翻译,并介绍了三个组合:将3D躯干和心脏几何形状转换为相应的标准2D表示,以及基于Pix2Pix网络的自定义深度学习模型的效率。使用11名健康受试者和29个ID型心室心室纤颤(IVF)患者,其框架的平均绝对误差(MAE)的平均平均绝对误差(MAE)为0.012±0.011,平均相似性指数量度(SSIM)为0.984±0.026。For the concatenated electrograms (EGMs), the average MAE was 0.004 ± 0.004, and the average Pearson correlation coefficient (PCC) 0.643 ± 0.352.估计激活和恢复时间之间时间差的绝对平均值为6.048±5.188毫秒,而18.768±17.299 ms,分别是分数。这些结果证明了与标准心电图相当的性能而无需CT/MRI,这表明该框架的潜在临床应用。