我们通过引入合适的3量子门克服了这一困难(例如Toffoli Gate或CCNOT,见图4)。这样的门允许通过适当地选择第三个量子位的条目来实现量子状态的副本和两个量子位之间的NAND操作。在实际物理平台上执行量子算法时,由于测量或噪声,系统与环境的相互作用会降低信息。这与真实的经典设备中发生的情况有所不同,因为描述测量值或嘈杂进化的量子通道不会简单地以随机的方式翻转Qubit的状态,而是可以实际上可以将纯状态转换为混合状态,从而导致信息损失。此外,由于无用定理,错误校正方案更难实现。仍然,我们可以开发可容忍的算法以最大程度地减少损害,并且我们有一个重要的理论结果,称为阈值定理。这是经典von Neumann定理的类似物,并指出,通过应用量子误差校正方法,可以将错误率低于一定阈值的量子计算机可以将错误率降低到任意较低的级别。因此,我们希望总体上创建易于故障的算法和可行的量子计算。我们邀请读者查看此类算法的拓扑方法[19,20,8]。
我的一位前教授曾经将一本关于差异几何学的流行教科书描述为“厕所阅读”。诚然,他使用了更多粗略的术语。此描述意味着文字很容易访问,以至于他可以在经常浴室时阅读这本书。该描述并不意味着称赞。。。这本简短的书旨在是“厕所阅读”。差异几何形状经常被抽象地呈现,而驱动直觉隐藏得很好。相反,我试图使此文本尽可能容易地消化。。。也就是说,我认为您在机器学习和与此领域相关的标准数学工具方面具有一定的经验。也就是说,您应该熟悉基本演算,线性代数和概率理论。
石墨烯器件中的量子霍尔效应最近允许使用稳健的电阻平台( R H = R K /2 = h /2 e 2 )作为欧姆的计量实现 [1]。未来传播欧姆的途径之一是通过构建能够提供多个量化电阻值的量子霍尔阵列电阻标准 [2]– [6]。在制造此类网络之前,必须降低接触和互连处的累积电阻。在本研究中,使用四端和两端方法测量和比较了外延石墨烯器件的量化霍尔电阻 (QHR)。当应用超导多串联接触时,不希望的电阻显著降低。这些新的设备接触几何形状和成分为下一代电阻标准的设计开辟了新途径。
本文报告了一项旨在为航站楼区域到达航班排序开发直观航线设计的研究。在引入航线结构以解决传统引导技术的缺点时,高密度环境中的主要挑战是保证在交通高峰期间有效使用这些航线,此时需要某种形式的路径延伸。该研究依赖于实验中心与巴黎戴高乐机场管制员进行的两组迭代小规模人在环模拟。它能够识别关键设计特征,包括与合并点的最小距离以及顺风和基准航线之间的角度。管制员反馈和初步分析表明,即使在高交通高峰下,最终的航线设计也可以促进排序,大大减少引导并使轨迹远离轴线区域。该研究还提供了基于距离演变的初步分析,可以重新用于评估新设计。下一步将是评估实际巴黎戴高乐机场环境中的适用性,这将需要对已确定的特征进行调整。
摘要:对称性 SU(2) 及其几何布洛赫球渲染已成功应用于单个量子比特(自旋-1/2)的研究;然而,尽管此类系统对于量子信息处理至关重要,但将此类对称性和几何扩展到多个量子比特(甚至只有两个)的研究却少得多。在过去的二十年里,两种具有独立出发点和动机的不同方法已被结合起来用于此目的。一种方法是开发两个或更多量子比特的酉时间演化以研究量子关联;通过利用相关的李代数,特别是所涉及的汉密尔顿量的子代数,研究人员已经找到了与有限射影几何和组合设计的联系。几何学家通过研究射影环线和相关的有限几何,得出了平行的结论。本综述将量子物理学的李代数/群表示视角和几何代数视角结合在一起,以及它们与复四元数的联系。总之,这可以看作是费利克斯·克莱因的埃尔朗根对称和几何纲领的进一步发展。特别是,两个量子位的连续 SU(4) 李群的十五个生成器可以与有限射影几何、组合斯坦纳设计和有限四元群一一对应。我们考虑的非常不同的视角可能会为量子信息问题提供进一步的见解。扩展适用于多个量子位,以及更高自旋或更高维度的量子位。
摘要:当飞机被视为最终产品时,它具有复杂的结构和众多需要管理的部件。复杂性要求多功能设计活动,而多功能设计需要协作的工作方式才能持续成功。这种协作方法只能借助并行工程技术来实现。目前,在 CAD 工具的数字环境中执行了几项独特的设计活动。产品各部件之间的位置信息和相互关系由关联物理 CAD 链接提供。设计活动期间对 CAD 链接的要求为使用主几何模型作为飞机形状的官方来源和所有相关参与者的几何参考铺平了道路。必须在产品生命周期管理工具中管理主几何模型,以便从概念、设计和制造到产品的服务和处置有效地实施和使用模型。当试图在 CAD 环境中在主几何模型和产品 3D 模型之间建立关联时,可能会观察到一些不恰当的情况。本文将研究这些案例,并通过具体的例子提出潜在的解决方案,这些解决方案是经验教训活动的结果。
摘要 - 在这项工作中,我们提出了一种新的方法,将机器人几何形状表示为距离场(RDF),该方法将签名距离场(SDF)的原理扩展到铰接的运动链。我们的方法采用了伯恩斯坦多项式的组合,以高精度和效率编码每个机器人链路的签名距离,同时确保SDF的数学连续性和不同性。我们进一步利用机器人的运动学链来在关节空间中产生SDF表示,从而允许以任意关节配置进行稳健的距离查询。提议的RDF表示在任务和关节空间中都是可区分和平滑的,使其直接集成到优化问题。此外,机器人的0级集合对应于机器人表面,可以将其无缝整合到全身操纵任务中。我们在模拟和7轴Franka Emika机器人中进行了各种经验,与基线方法进行了比较,并证明了其在避免碰撞和全身操纵任务方面的效率。项目页面:https://sites.google.com/view/lrdf/home
外延石墨烯 (EG) 器件中的量子效应使得量子霍尔效应 (QHE) 电阻在 R H = R K / 2 = h /2 e 2 处达到稳定的水平,其中 R H 是霍尔电阻,R K 是冯·克利青常数 [1]–[3]。通过使用串联和并联连接作为构建块,我们可以构建量子霍尔阵列电阻标准 (QHARS),以提供多个量化电阻值 [4]–[9]。然而,基于多个量化霍尔电阻 (QHR) 器件的电阻网络通常会受到接触和互连处累积电阻的影响。在本文中,我们表明,通常在四个端子处测量以获得高精度的量化电阻也可以在应用超导分裂接触时通过消除不需要的电阻在两个端子处测量。虽然 QHE 器件的多串联 (MS) 互连已经得到了广泛的研究
摘要:当飞机被视为最终产品时,它具有复杂的结构和众多需要管理的部件。复杂性要求多功能设计活动,而多功能设计需要协作的工作方式才能持续成功。这种协作方法只能借助并行工程技术来实现。目前,在 CAD 工具的数字环境中执行了几项独特的设计活动。产品各部件之间的位置信息和相互关系由关联物理 CAD 链接提供。设计活动期间对 CAD 链接的要求为使用主几何模型作为飞机形状的官方来源和所有相关参与者的几何参考铺平了道路。必须在产品生命周期管理工具中管理主几何模型,以便从概念、设计和制造到产品的服务和处置有效地实施和使用模型。当试图在 CAD 环境中在主几何模型和产品 3D 模型之间建立关联时,可能会观察到一些不恰当的情况。本文将研究这些案例,并通过具体的例子提出潜在的解决方案,这些解决方案是经验教训活动的结果。