摘要在本文中,为在提高Nesterov加速梯度方法的收敛速率时,提出了基于符号和接触差异的显式稳定积分器。符合性几何形状适用于描述Ham-iLtonian力学,接触几何形状被称为奇异的几何形状。一种称为符合性的程序是一种已知的方法,可以从触点歧管中构建符号歧管,从接触膜构造自动式哈密顿系统。在本文中发现,先前研究的非自主odes可以写为汉密尔顿系统家庭。然后,通过开发和应用表达非自主odes的非自主接触的符合性,并实现了新型的符号积分。由于所提出的符号积分器保留了ODES中隐藏的符号和接触结构,因此预计它们比Runge -Kutta方法更稳定。数值实验表明,正如预期的那样,二阶符号积分器是稳定的,并且达到了高收敛速率。
14423数学I:现代代数和分析几何形状------------------- 14463:动物学I:弦的功能解剖
摘要:我们介绍了一种基于拓扑原理设计膨胀(负泊松比)结构的新方法,并通过研究基于二维 (2D) 纺织编织图案的新型膨胀材料来证明该方法。设计膨胀材料的传统方法通常涉及确定单个可变形材料块(一个晶胞),其形状会导致膨胀行为。因此,在 2D(或 3D)域中对这样的晶胞进行图案化会产生更大的结构,该结构会表现出整体膨胀行为。这种方法自然依赖于一些先前的直觉和经验,即哪些晶胞可能是膨胀的。其次,调整所得结构的属性通常仅限于特定类型晶胞几何形状的参数变化。因此,目前已知的大多数膨胀结构属于少数几类晶胞几何形状,这些几何形状是根据指定的拓扑(即网格结构)明确定义的。在这项工作中,我们展示了一类新的膨胀结构,虽然具有周期性,但可以隐式生成,即无需参考特定的晶胞设计。该方法利用基于编织的拓扑参数(
深度神经网络 (DNN) 的几何描述有可能揭示神经科学中计算模型的核心原理,同时抽象出模型架构和训练范例的细节。在这里,我们通过量化其自然图像表示的潜在维数来检查视觉皮层的 DNN 模型的几何形状。一种流行的观点认为,最佳 DNN 将其表示压缩到低维子空间以实现不变性和鲁棒性,这表明更好的视觉皮层模型应该具有低维几何形状。令人惊讶的是,我们发现了一个相反方向的强烈趋势——在预测猴子电生理学和人类 fMRI 数据中对伸出刺激的皮层反应时,具有高维图像子空间的神经网络往往具有更好的泛化性能。这些发现适用于 DNN 的各种设计参数,它们提出了一个普遍原则,即高维几何形状为视觉皮层的 DNN 模型带来了显著的好处。
Moiré材料的兴起导致了小型或消失的磁场中整数和FCI的实验实现。同时,确定了一组最小条件,足以保证在平坦带中的阿贝尔分数状态,即“理想”或“可涡流”量子几何形状。这种可涡流带与LLL共享基本特征,同时不需要对诸如Flat Berry曲率等更微调的方面。自然而重要的概括是询问是否可以扩展此类条件以捕获较高的Landau水平的量子几何形状,尤其是第一个(1LL),在ν= 1/2 = 1/2、2/5处的非亚伯利亚状态已知具有竞争力。如果我们能够确定Chern频段中1LL的基本结构,那么在零磁场上实现这些状态的可能性也可能成为现实。在这项工作中,我们介绍了1LL量子几何形状的精确定义,以及一个功绩的图形,该数字可以测量给定频段接近1LL的程度。周期性紧张的伯纳尔石墨烯也显示出即使在零磁场中也实现了这样的1LL结构。
深神经网络(DNN)的几何描述有可能发现神经科学中计算模型的核心代表原理。在这里,我们通过量化其自然图像表示的潜在维度来检查视觉皮层的DNN模型的几何形状。流行的观点认为,最佳DNNS将其表示形式压缩到低维子空间以实现不变性和鲁棒性,这表明更好的视觉皮层模型应具有较低的维几何形状。令人惊讶的是,我们发现相反方向的强烈趋势 - 具有高维图像子空间的神经网络在预测猴子电生理学和人类FMRI数据中对持有刺激的皮质反应时倾向于具有更好的概括性能。此外,我们发现,在学习新的刺激类别时,高维度与更好的性能相关,这表明更高的维度表示更适合于概括其训练领域。这些发现提出了一个一般原则,高维几何形状赋予了视觉皮层DNN模型的计算益处。
表面坡度不连续且悬在表面的高宽比突出特征(峰)对集成功能组件到具有复杂几何形状的物体上具有挑战性。或者,可以使用液体载体(例如浮在水中的转印膜,将物体浸入其上)将功能组件集成到具有复杂几何形状的物体上。但是,很难在复杂几何形状上精确沉积未首先在薄转印膜上形成的小组件阵列,因为与液体载体相比,每个阵列元素在薄膜上的移动相对受到限制。相比之下,打印和拾取放置过程在物体的几何形状方面更加灵活,但要求组件材料可打印或可抓取。这还要求以 3D 形式对物体进行数字映射,从而增加制造时间和成本。为了克服基于添加剂的表面改性工艺中仅使用固体或液体载体所带来的一些限制,Zabow 介绍了一种转移技术,用于将功能成分阵列以复杂的几何形状排列在目标上(例如,成分的周期性图案,与曲面相符)。该方法使用糖混合物作为可倾倒和可溶解的载体,工艺类似于制作硬糖的工艺。将加热的糖和玉米糖浆混合物冷却,但在凝固之前,将其倾倒在要整合到表面上的成分上,形成可熔的“印章”。Zabow 从倾倒和凝固步骤(铸造)开始,在此步骤中,将糖基载体在低温下倾倒在已在初始表面上以所需图案预先排列的功能成分(包括微尺度金属、聚合物和玻璃元素)上。然后,通过将印章慢慢融化在目标物体上(因此称为回流),将这些组件(现在嵌入硬化的糖混合物“印章”)转移。变形的糖混合物冷却并重新凝固后,用水冲洗掉糖混合物。由于该过程使用经历相变的载体,因此它提供了对固体载体的控制以及液体载体的几何匹配。因此,该技术消除了