本文论文有助于研究量子数据分析和量子场动力学中的几何形状。第一部分致力于远程均衡时间的演变和量子多体系统的热化。我们讨论了在纺纱杆气中的易于平面铁磁铁的动态凝结和热化的观察,该旋转螺旋体气体与远距离顺序和超级功能的堆积一起观察。in
医疗保健相关感染(HAIS)每年在全球范围内占数亿个感染。化学消毒剂在全球范围内作为感染控制的主要方法,因此这种依赖性可能会随着抗菌耐药性的不断升高而进一步加强。减轻HAI的影响将需要改善当前的感染控制措施,只有阐明了潜在的局限性,才能做出。对使用消毒剂的使用的担忧已经提高了细菌耐受性的发展以及细菌采用各种与生存相关的行为反应的能力,例如可行但不可培养(VBNC)。此外,许多商业消毒产品由多种活性抗菌剂的制剂组成,中心公理是存在更多的作用机理必须增强产物的功效并减轻细菌耐受性的发展。然而,很少有科学研究对这些假定的有益相互作用进行了询问。该项目旨在阐明与使用通常用作感染控制措施的化学消毒剂有关的上述限制。发现消毒剂之间的协同相互作用并不常见,物种依赖物和协同分类的阈值,而肺炎克雷伯氏菌肺炎则能够通过对vbnc的适应和诱导来发展对单个消毒剂的耐受性,并通过对vbnc的适应和诱导来形成综合的消毒剂。通过多种方法方法鉴定出对一系列常见消毒剂的耐受性的分子机制,从而识别了K.肺炎证明的消毒剂耐受性的新机制。这些数据表明,HAI相关的致病细菌能够适应低级消毒剂暴露,并且消毒剂制剂对在耐受性发展和VBNC诱导方面的单独使用的消毒剂提供了最小的益处。这些数据强调了我们对每天都在全世界严重依赖的消毒剂的理解和态度的局限性。最后,该项目标志着直接VBNC量化和隔离的新方法的初步发展。目前,VBNC研究受到了高度有缺陷的方法的限制和限制,因此这种有前途的新方法的进一步发展可能会提供新的机会,以扩大我们对VBNC状态的理解。
1 维也纳技术大学微电子研究所 Christian Doppler 半导体器件和传感器多尺度过程建模实验室,Gußhausstraße 27-29/E360, 1040 Vienna, 奥地利;bobinac@iue.tuwien.ac.at (JB);reiter@iue.tuwien.ac.at (TR) 2 维也纳技术大学微电子研究所,Gußhausstraße 27-29/E360, 1040 Vienna, 奥地利;piso@iue.tuwien.ac.at (JP);klemenschits@iue.tuwien.ac.at (XK) 3 Global TCAD Solutions GmbH,Bösendorferstraße 1, Stiege 1, Top12, 1010 Vienna, 奥地利;o.baumgartner@globaltcad.com (OB); z.stanojevic@globaltcad.com (ZS);g.strof@globaltcad.com (GS);m.karner@globaltcad.com (MK) * 通信地址:filipovic@iue.tuwien.ac.at;电话:+43-1-58801-36036 † 本文是我们发表在 2022 年 9 月 21 日至 23 日在希腊科孚岛举行的第四届微电子器件和技术国际会议 (MicDAT) 论文集上的论文的扩展版本。
一个人可以使用描述性命名法(例如“量子波方程”)或同名命名法(对于同一示例,“schrödinger方程”)。后者更好地融入了讲故事的方法,尽管必须始终在某个地方提供描述!在这里,为了方便“热力学III几何”特刊的读者,我们欣赏了有关各种复杂系统的“浆果阶段”分析的非常大的文献。这不是特刊的编辑摘要,而是试图将与特殊问题相关的技术领域连接起来,目前几乎完全断开了连接。特别是,一组工人解决了“定量的几何热力学”,因此[1],另一个工人解决了光学系统[2],而另一批则解决了快速/慢速动态系统[3]。令人惊讶的是,这些都是正式相关的,在这里,我们希望给出某种连贯的概述,尤其是这些领域,尤其是这些关系。在这个通用场中进行了多少工作是非凡的,因此此“审查”只是指示。它强调并不详尽。如Gu等人。[4]指出,“当经典或量子系统经历其参数空间缓慢变化控制的环状进化时,它获得了一种拓扑相位因子,称为几何或浆果阶段,这揭示了量子力学中的量规结构”。“ Hannay的角度”是此额外量子相[5]的经典对应物,从旋转顶部的优雅处理中可以清楚地看出[6]。[8],也有助于总结了该领域)。量子几何阶段和经典的Hannay角度确实密切相关,这是通过最近的工作确认的断言[7]。aharonov – bohm效应(由零幅度的字段引起的波函数相移的奇怪现象)到目前为止已经进行了充分的研究。甚至被认为是对重力场的物质波的适当时机的相移(参见Oversstreet等人。这种相移被称为“浆果”,1984 [2]或“几何阶段”之后的“浆果阶段”(使用Berry首选的描述性命名法,他指出了包括Pancharatnam在内的许多杰出贡献者,包括Pancharatnam [9])。Berry最初对绝热系统进行了处理,但后来意识到对非绝热情况的概括是“直接的” [10]。这也用摩尔[11]优雅地解释了Floquet定理(固态物理学家称为Bloch定理)。摩尔指出,“浆果阶段”也被称为“ aharonov – anandan阶段”,因为他们的治疗实际上是去除绝热限制的第一个[12],尽管似乎(非绝热)Aharonov – Aharonov – Anandan阶段可能与(Adibiabatic)
1 简介 增材制造 (AM) 是指通过连接材料从 3D 模型制造零件的工艺 [1]。定向能量沉积 (DED) 是一种特殊类型的金属 AM 工艺,其中激光和金属粉末的交汇会在基材上形成熔融的金属池(熔池),然后冷却以形成固体金属轨道。此过程逐层重复以创建最终部件。与其他金属 AM 工艺相比,DED 以其制造大型工件、构建近净形状以及修复现有零件和铸件的能力而闻名 [2–4]。此外,DED 还用于开发高级材料,例如分级材料 [5],这允许将金属粉末组合用于单个部件的不同位置。因此,AM 技术为制造业带来了重大创新。与传统的减材制造相比,AM 允许无与伦比的灵活设计,并通过仅在需要的地方沉积材料来减少材料浪费 [6]。尽管 DED 具有上述优势,但由于零件质量不可靠,需要改进过程监控和控制才能在整个行业范围内采用。具体而言,零件质量差是由于激光成型对操作和边界参数(包括激光功率)的微小变化高度敏感 [7]。基于反馈的方法有可能动态调整激光功率以减少过程波动,而无需参考特定的、先前测试过的几何形状和沉积历史。非接触式仪器已广泛用于类似应用,因为它们能够在远离沉积区域热量的安全距离处收集信息。由于激光温度高,高熔化温度、高功率激光反射和非层流很容易导致传感器损坏。当考虑成本和易于集成时,使用可见光摄像机进行光束同轴熔池监测仍然是一种方便且经济高效的解决方案,因为许多 DED 沉积头都配备了用于将监测摄像机纳入光学链的端口 [8]。因此,这项工作专注于一种视觉装置,该装置可以通过熔池的能量含量间接检测珠子高度的异常,从而可以预测和纠正与所需沉积结果的潜在偏差。此外,还创建了数据收集和标记管道,以减少数据准备时间。为了预测轨道几何形状的偏差,我们探索了机器学习 (ML) 算法的使用,特别是支持向量回归 (SVR) 和卷积神经网络 (CNN) 的回归。对创建的模型进行了评估,以确定其是否能够集成到边缘设备上,以实现机器的闭环或前馈控制。
输送液体流动的自然结构表现出流动介导力和长期适应之间的相互作用。这种现象与心血管系统有关,其中心腔的几何重塑是导致心力衰竭的病理进展的主要机制。这里分析了心脏中只有一个右心室 (SRV) 的儿童的心脏适应性。在这些患者中,左心室 (LV) 发育不良,健康的右心室 (RV) 在出生后早期通过手术重新连接,以承担系统心室的功能作用。这种情况代表了一种研究心脏适应性的特殊模型,本研究利用了不常见的数据集(64 个正常 RV、64 个正常 LV、64 个具有临床正常功能的 SRV)。从流体动力学和组织变形的角度分析心室功能性能,目的是验证 SRV 配置从原始 RV 适应到向 LV 功能发展的程度。结果表明,由于工作压力较高,SRV 的体积立即增大,几何形状也更宽。然而,流体动力学湍流较弱,推进力减小。周围组织出现肌肉增厚,肌纤维多向取向,模仿 LV。然而,流动性能降低和结构一致性较低使 SRV 面临更高的进行性功能障碍适应风险。这项研究表明了心脏流量和组织反应之间的相互作用如何代表导致心力衰竭发展的宏观驱动因素。更一般地说,联合评估流体动力学和结构功能特性可能是探索不同时间尺度上的适应过程的必要条件。
M. Bansil和J. Kitagawa(2022),“半污垢最佳运输几何形状的定量稳定性”,《国际数学研究公告》,第1卷。2022,编号10,pp。7354–7389 2020年12月31日提前访问出版
锂离子电池的热失控可能涉及各种类型的故障机制,每种机制都有其独特的特征。使用分数热失控量热法和高速射线照相术,对三种不同几何形状的圆柱形电池(18650、21700 和 D 型电池)对不同滥用机制(热滥用、内部短路和钉子刺穿)的响应进行了量化和统计检查。确定了电池几何形状与其热行为之间的相关性,例如在钉子刺穿过程中,随着电池直径的增加,电池每安培小时的热量输出(kJ Ah − 1 )会增加。高速射线照相术显示,与热滥用或内部短路滥用相比,钉子刺穿时电池内的热失控传播速率通常最高,其中随着直径的增加,传播速率相对增加。对于在相同条件下测试的特定电池模型,观察到热量输出分布,随着质量喷射的增加,热量输出呈增加的趋势。最后,使用嵌入在穿透钉中的热电偶进行内部温度测量被证明是不可靠的,因此表明在温度快速变化的情况下使用热电偶时需要小心。本文中使用的所有数据均通过 NREL 和 NASA 电池故障数据库开放获取。© 2022 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是正确引用原始作品。[DOI:10.1149/ 1945-7111/ac4fef ]
微血管是支持异质脑区神经元活动的供应网络的基础。毛细血管网络的连接性、密度和方向的共同点和异质点是什么?为了解决这个问题,我们以亚微米分辨率对整个成年小鼠脑中的微血管连接组进行了成像、重建和分析。图形分析揭示了整个大脑的共同网络拓扑结构,这导致了对血管稀疏的共同结构稳健性。基于解剖学精确重建的几何分析揭示了一种将长度密度(即每单位体积的血管长度)与组织到血管距离联系起来的缩放定律。然后,我们推导出一个公式,将代谢的区域差异与长度密度的差异联系起来,并进一步预测整个大脑的最大组织氧张力的共同值。最后,毛细血管的方向是弱各向异性的,除了一些强烈各向异性的区域;这种变化会影响 fMRI 数据的解释。
量子计算是一种计算模型,其中数据存储在受量子物理定律控制的粒子状态下。该理论已经足够确定,可以设计其应用程序从公共和私人参与者那里收集利益的量子算法[29,31,17]。量子对象的基本属性之一是具有双重解释。在第一个中,量子对象被理解为粒子:空间中的确定,局部点,与其他粒子不同。光可以被视为一组光子。在另一种解释中,该对象被理解为波浪:它在空间中“扩散”,可能具有干扰。这是将光解释为电磁波的解释。计算的标准模型使用量子位(Qubits)来存储信息和量子电路[30],以描述带有量子门的量子操作,这是布尔门的量子版本。尽管用于量子计算的普遍模型,但仅以直观的方式给出了量子电路的操作语义。量子电路被理解为某种顺序的低级装配语言,其中量子门是不透明的黑盒。特别是,量子电路本身并不具有任何形式的操作语义,从而引起抽象的推理,方程理论或有充分的重写系统。从表示的角度来看,量子电路是线性操作员的张量和应用的字面描述。这些可以用历史矩阵解释[30]或更近期的总计语义[1,6]来描述这些 - 这可以是
