牲畜是印度社会不可或缺的一部分,为社会经济,营养和宗教界做出了多方面的贡献,尤其是农村人口。农场动物通过牛奶,肉,鸡蛋,羊毛和纤维生产直接贡献,并为2050万人提供就业,并为数百万边缘和无土地的农民/劳动者提供生计。估计,人类总蛋白质需求的30%来自畜牧业。在2022 - 23年期间,该国的总牛奶和鸡蛋生产分别为23058万吨和1383.8亿吨。当前的牲畜和家禽生产与1950 - 51年相比增加了几倍。牛奶中的11.7次,鸡蛋中的62.4次,羊毛的1.33次,肉(自2000年以来)的4.62次。 ICAR结构良好的研究计划在该国畜牧业的进步中发挥了关键作用。牛奶中的11.7次,鸡蛋中的62.4次,羊毛的1.33次,肉(自2000年以来)的4.62次。ICAR结构良好的研究计划在该国畜牧业的进步中发挥了关键作用。
要实现拜登政府制定的雄心勃勃的脱碳目标,即到 2035 年实现 100% 清洁电力,到 2050 年实现净零排放经济,就需要大幅增加清洁和可再生能源在发电结构中的份额。为了以经济高效的方式实现这些脱碳目标,可再生能源需要增长到当前水平的几倍。输电系统无法处理预期的电力流量大幅增加;其容量和可用性不足导致电网拥堵,从而导致能源价格上涨并限制可再生能源。此外,随着预期的经济电气化导致未来需求大幅增加,电网的负担不断增加。REPEAT 项目的一份报告估计,要充分利用《通货膨胀削减法案》(IRA)提供的补贴,输电容量必须每年增长约 2.3%,是过去 10 年增长率的两倍多(Jenkins 等人,2022 年)。
Salesforce 服务市场在咨询、集成以及越来越多的托管服务解决方案(尽管规模较小)领域都具有创新、规模和发展势头。近年来,Salesforce 经历了大幅增长;2019 年至 2022 年,收入翻了一番,生态系统的价值以更快的速度增长。价值和机遇的加速增长是由 Salesforce 在企业中日益重要的战略重要性推动的,这些企业需要完整的端到端客户体验能力,这主要是由于 COVID 大流行及其后续挑战导致商业和政府服务和产品交付发生变化。随着 2023 年的开始,大多数拥有成熟和领先能力的 SI 都将其 Salesforce 平台投资的战略重要性置于与 AWS 和 Azure 类似的地位。对于许多人来说,如果被迫做出选择,Salesforce 平台在战略和财务上仍然比 Oracle 更重要,与 Oracle 相比,Salesforce 的增长率是其几倍。
我们渐近地构造了一个静态球形激发态,该激发态在可重正化量子引力中无奇点,具有无背景性质。其直径由量子引力的关联长度给出,比普朗克长度长 2 个数量级,外部有史瓦西尾。内部的量子引力动力学采用非微扰高阶修正表达式来描述,该表达式假设了动力学在强耦合的边缘消失的物理要求。运行耦合常数是非线性和非局域性的表现,通过将其近似为依赖于径向坐标的平均场来管理。如果质量是普朗克质量的几倍,我们可以建立一个包含运行效应的引力势线性化运动方程组,并获得激发态作为其解。它可能是暗物质的候选者,并将为黑洞物理学提供新的视角。
用来表示平均速度剖面相似性的无量纲参数是 h/zo 比值,即对数速度剖面中建筑物高度与粗糙度长度的比值。但是,还需要强调正确模拟低层建筑模型屋檐高度周围高度的全尺度湍流强度的重要性,因为波动压力系数和峰值压力系数与该参数有很强的依赖性,而平均压力与该参数的依赖性较弱,但很重要。只有当风洞中模拟的边界层正确模拟了低层建筑模型整个高度及以上的大气高湍流内表面层时,湍流强度相似性才会在 h/zo 相等的情况下实现。湍流长度尺度也需要尽可能与模型几何尺度相匹配,尽管在制作足够大的尺寸以适应低层建筑实际施工所需的 1/50 到 1/300 几何尺度方面存在困难。然而,结果表明,只要湍流尺度(通常用于主要涡流尺寸)比建筑尺寸大几倍,就可以放宽这一标准。 i i",.. i 2.4 、流动模式和流体压力分布
摘要:现代航空电子设备约占飞机总成本的 30%。因此,降低航空电子设备在使用寿命内的运行成本至关重要。本文讨论了创建适当的数字航空电子系统维护模型这一关键科学问题,从而显著提高其运行效率。在本研究中,我们提出了生命周期成本方程,以选择数字航空电子设备维护的最佳方案。所提出的成本方程考虑了飞行过程中发生的永久性故障、间歇性故障和误报。生命周期成本方程是针对飞机运行的保修期和保修期后间隔确定的。我们为每个服务期建模了几种维护方案。成本方程考虑了永久性故障和间歇性故障的特征、飞行中误报和真报的条件概率以及不同维护操作的成本、飞行时间和一些其他参数。我们已经证明,带有间歇性故障检测器的三级保修后维护方案是最佳的,因为与其他维护选项相比,它将预期总维护成本降低了几倍。
1 图 1 中显示的数据来自美国能源信息署 (EIA) 表格 EIA-860。2 此值表示交流额定值或互连容量,即电厂可以注入电网的最大量。对于光伏+电池系统,互连容量可能小于或等于组件光伏和电池容量的总和。例如,互连请求可能等于光伏逆变器容量(这在 CAISO 中很常见);它可能等于单独的光伏和电池逆变器容量的总和(以在高压力或高价值时间实现两种资源的最大输出);或者它可能小于光伏逆变器容量,表示电池将在高峰生产时间从光伏充电。3 表 1 中显示的互连队列中的总容量是 EIA-860 数字的几倍。这种差异是由于 (1) 互连队列超过五年和 (2) 只有预计将上线的电厂才会添加到 EIA-860。由于进入互连队列的发电机中只有一小部分最终被添加,因此表 1 提供了未来容量增加的上限。
用来表示平均速度剖面相似性的无量纲参数是 h/zo 比值,即对数速度剖面中建筑物高度与粗糙度长度之比。然而,正确模拟低层建筑模型屋檐高度周围高度的全尺度湍流强度的重要性也需要强调,因为波动压力系数和峰值压力系数对这个参数有很强的依赖性,而平均压力对这个参数的依赖性较弱,但很重要。只有当风洞中模拟的边界层正确模拟了低层建筑模型整个高度及以上的大气高湍流内表面层时,湍流强度的相似性才会在 h/zo 相等的情况下实现。湍流长度尺度也需要尽可能与模型几何尺度相匹配,尽管在制作足够大尺度以适应低层建筑实际施工所需的 1/50 到 1/300 几何尺度方面存在困难。然而,结果表明,只要湍流尺度(通常用于主要涡流尺寸)比建筑尺寸大几倍,就可以放宽这一标准。ii,”.. i 2.4、流动模式和 M4n 压力分布
有效控制线性高斯量子 (LGQ) 系统是基础量子理论研究和现代量子技术发展中的重要任务。在此,我们提出了一种基于梯度下降算法的通用量子学习控制方法,用于最佳控制 LGQ 系统。我们的方法利用完全描述 LGQ 系统量子态的一阶和二阶矩,灵活地设计用于不同任务的损失函数。我们使用这种方法展示了深度光机械冷却和大型光机械纠缠。我们的方法能够在短时间内对机械谐振器进行快速和深度基态冷却,超越了连续波驱动强耦合机制中边带冷却的限制。此外,即使热声子占有率达到一百,光机械纠缠也可以非常快地产生,并且超过相应稳态纠缠的几倍。这项工作不仅拓宽了量子学习控制的应用范围,而且为 LGQ 系统的最优控制开辟了一条途径。
结果:等位基因C和T的等位基因频率分别为72和28%。在主要的遗传模型下,观察到较小的言语等位基因的显着易感关联,其平均言语综合指数(OR = 2.216,p = 0.003,CI(95%)= 1.33–3.69)= 1.33–3.69),平均绩效指数较低(OR = 2.634,P <0.001,CI(CI(955))= 1.51(955) - = 1.51(951)。 IQ-4(OR = 3.159,P <0.001,CI(95%)= 1.873–5.328)。Met-Cleares的载体的体重指数增加(OR = 2.538,P <0.001,CI(95%)= 1.507–4.275),收缩压降低(OR = 2.051,P = 0.012,p = 0.012,CI(95%),CI(95%)= 1.202-3.502),或降低了尿症(或poi = 2. 2. 16,或= 2.16,ci(或= 2.16) (95%)= 1.278–3.657)。在隐性遗传模型下,还检测到智商和BP的几倍降低,并且还检测到T等位基因的存在,BMI的增加。