长期以来一直有兴趣使用微生物在生物驱动的电化学系统中直接发电。第一个这样的系统是用异养微生物运行的,被称为微生物燃料电池。他们依赖于从细胞出口并由阳极收集的代谢过程中的一些电子。微生物燃料电池提供了同时分解废物并产生电力的有吸引力的可能性,并已被用来产生电源来照亮那里收获的尿液中的液压[1]。最近,已经描述了使用光合合成微生物而不是异胞营养的系统来产生电力[2-5]。它们如何工作,并且会有用吗?典型的设备[2-4],称为“生物伏洛耐型设备”或“ BPVS”,使用氧气苯二合成微生物(通常是蓝细菌,但真核藻类也可以使用)。这些生物利用太阳能来氧化水,产生通常用于细胞内二氧化碳固定的电子,氧作为废物。但是,某些电子离开细胞(“外部发生”)。电子采用的路线以及某些电子离开电池的原因尚不清楚。外部发电可能有助于金属动员或处理吸收过量光能的影响。然而,电子可以通过阳极收集,通过外部电路绕过,并在催化天主教处重新组合,氧气和质子形成水。在外部电路周围通过时,电子做有用的工作。与传统的光伏电池不同,BPV还会在黑暗中产生动力(可能是由储存的光合作用产品的代谢),并且与电池不同,它们不会不可避免地会降低,因为它们由阳光提供动力,而不是电池中电极的可消耗性的氧化还原夫妇。在实验室中都非常好,但是由光合微生物提供的BPV会有现实世界中的应用,多久?实验室研究表明,每平方米0.5至0.8瓦的区域的最大功率输出[5,6],并且估计表明它们原则上可以产生每平方米多达几瓦的数量。这比传统的光伏安装少,尽管最多只有几倍[3]。很小,但已经能够为项目供电
1简介本文档解释了区块链中使用的技术。它主要是为某种技术受众编写的,这些受众只会稍微意识到不同的区块链的工作方式。因此,它使用了术语和互联网技术和标准计算机科学中常见的术语和示例。该解释旨在中立:既不促进区块链技术。本文档的主要目的是帮助ICANN社区了解当前和拟议的区块链名称系统,如Acto-039介绍中所述,“区块链名称系统技术”。它被组织为一个详细的词汇表,将各种区块链概念置于技术和操作环境中。即使当前的区块链主要用途用于金融,该文档涵盖了仅在必要时使用区块链的文档。读者寻求有关区块链的多种方式的信息可以在其他有关区块链的各种出版物中找到它。本文档中使用的术语通常与区块链生态系统中某些人使用的术语不符。在本文档中,术语是技术中立的,而区块链生态系统中使用的术语通常是促销,过于复杂或两者兼而有之。当本文档使用与区块链生态系统中常见的术语时,它列出了该生态系统的相似术语。这是该文档的第一个发布版本。第二版可能会更长,但将包含相同的中性音调。区块链的不同组件通常相互联系。作者预计将在第一个版本发布大约六个月后发布第二个版本,其中包括在发布第一个版本后收到的更正和添加。请将有关本文档的所有评论和问题发送至octo@icann.org。2基本区块链组件有数千个不同的区块链。本文档提供了区块链技术的一般概述,但有时会引用比特币或以太坊的特定方面。它概述了区块链技术的各个部分,但并不是全面的。一份全面的文件将比这份文件长几倍,并且鉴于区块链技术的快速发展速度,就会在出版时立即过时。这种相互联系使得写入区块链的技术描述特别困难:尚不清楚哪种形式描述组件的顺序以及交联描述可以导致参考的纠结迷宫。结果是,读者在几乎几乎结束文档的末尾都可能没有完整的图表。例如,当人们谈论“区块链”时,他们可以含义一些不同的事情(所有介绍):
I.引言m绘制的喷嘴推进器是正在开发的几种技术之一,旨在满足对低功率,高特定冲动的空间推进的需求。这些推进器通过通过扩展的直流磁场加热和加速等离子体来运行[1]。主要存储在血浆电子中的热能随着血浆通过磁场扩展而转换为离子动能。通常,这些设备使用射频或微波功率来加热等离子体,从而实现无电极操作。此推进器体系结构具有多种属性,使其非常适合小型卫星推进。例如,缺乏电极可以进行反应性推进剂和潜在的低侵蚀操作。同样,该设计仅需要一个电源。与以前的设计相比,使用电子回旋共振(ECR)作为磁性喷嘴推进器中的加热源的最新发展已产生有希望的结果。推力支架测量结果显示,在30瓦的1000秒内,特定的冲动在10%以上的推力官方官方[2]。这是低功率直升机的发布数据和电感耦合等离子体设计的几倍[3]。话虽如此,尽管ECR推进器的性能是有希望的,但对于任务申请,水平仍然没有竞争力。为了充分证明这项技术的潜力,迫切需要确定技术途径以更快地提高其成熟度。此启用等离子属性,即高电子温度。为此,以前的参数实验表明,对于推进器几何形状的小变化可能对整体性能具有很大的影响,这表明可能进行进一步的性能优化[4]。改善ECR性能的另一种方法是操纵微波输入到推进器的功率调节。例如,将具有不同频率的多个波在注入推进器之前混合在一起,或以脉冲方式调节振幅。波浪混合方法的基础假设是改变功率条件可能会改变ECR共振区的位置和大小。另一方面,使用脉冲功率使推进器可以摆脱源于0D功率平衡的正常限制。两种类型的功率调节已经成功地在用于重离子生产的ECR离子来源上实施[5]。但是,尚未对推进器进行探索。采用这种优化方法的主要挑战之一是问题的维度。没有完整的基础物理模型,优化需要无梯度的方法。只有两个免费参数,探索设计空间可能需要数十个或数百个样本点。因此,对于可以更有效地测试每个设计点的工具来说,需求显而易见。这项工作的目标是探索通过传统的单频率操作,两频加热和脉冲操作来优化低功率ECR推进器的策略。本文以以下方式组织。sec。sec。我们使用基于替代物的优化算法来指导每种情况下参数空间的探索。我们首先激励我们的研究。ii通过引入推进器的全局模型,我们用来确定密钥优化参数。iii我们描述了实验设置,包括推进器,真空设施和所使用的诊断。第四节详细详细介绍了优化过程和
在天文学/天体物理学中,研究可能在只有少数人的小组内进行,也可能在涉及一千多人的大型联盟内进行,或者介于两者之间。大型联盟通常以特定的观测设施为中心。 大型联盟处理的整体研究主题通常很广泛,可能包括在较小的子单位(科学工作组)内进行的多个特定研究课题。这仍然可以为个别科学家定义自己独特的项目留下充足的空间。 研究问题大多是基础/好奇心驱动的,但处理大型数据集、空间技术、光学/探测器开发和信号处理都有增值渠道。天文学/天体物理学在公众和儿童中非常受欢迎,因此社会影响通常被视为我们的其他增值形式之一。 数据档案的开发对许多项目起着越来越重要的作用。一些设施完全用于公共调查,其数据可供社区免费访问,而其他设施则在专有期(通常为 6-12 个月)后发布其数据。天文台/设施通常会公开征集(每年一到两次)新的观测,各个研究小组/团队提交提案,通过同行评审进行评判和分配。这些设施的认购量通常超额几倍甚至十倍,因此竞争非常激烈。建造仪器的财团也常常通过保证时间的观测获得部分补偿。因此,在很大程度上,数据是我们领域的一种货币形式。 研究项目的时间表差别很大。在某些情况下,可以相对较快地完成(例如基于公共数据、档案研究),而对于在专有期结束时发布的观测项目,时间会稍长一些,对于最大和最复杂的项目(例如涉及新设施或新方法),可能需要几年甚至几十年的时间。 由于天文设施价格昂贵(数百万至数十亿欧元),许多设施都是国际性的,因此我们的领域实际上没有边界。 建造和运营大型国际设施的时间通常比拨款周期长得多(几十年)。寻找确保长期稳定地资助此类项目的方法,是本领域面临的一大挑战,特别是因为资助机构往往区分基础设施建设、运营成本和科学开发。 现代天体物理学中研究的大多数过程都是高度复杂和非线性的,因此建模越来越依赖于半解析和数值方法。大型 HPC 设施的使用越来越多,这是我们领域的一个转变,使我们更接近信息学、物理学和理论分子化学等领域的努力。 我们的领域有许多跨学科联系:除了 HPC 和信息学之外,物理学和数学中也有常见例子(例如,通过荷兰天体粒子物理委员会 CAN 的广义相对论/黑洞/引力波和天体粒子物理等主题),以及化学、生物学和地球科学(例如,行星科学,通过荷兰天体化学网络、DAN 和行星和系外行星计划、PEPSCi 等计划)。
结核病是一种传染性细菌疾病,仍然是发病率和死亡率上升的全球健康问题。根据2022年全球结核病报告,结核病已超过艾滋病毒,是世界上最致命的传染病(世界卫生组织,2022年)。骨结核病占肺内结核病的35%。由于对现有的抗结核药物的反应不佳和局部骨组织中药物浓度较低,因此传统的药物疗法不会导致骨结核病的令人满意的治疗(Wang B.等,2021)。此外,抗结核药物的渗透不良,需要长期服用高药剂量才能维持局部骨组织中的浓度。因此,骨骨结核病的传统口服治疗至少涉及至少12个月的高剂量药物。(Li等,2016)。不幸的是,在开始药物治疗的一段时间后,大多数患者抱怨严重的副作用,其中一些患者退出了早期治疗,导致患者的依从性较低,甚至是耐多药耐药性结核病的紧急情况。在第一线抗结核药物中,rifampicin遭受了各种缺点,例如短期半寿命,差的生物利用度和高肝毒性,导致血液中利福平的利福平水平和增加的多重耐药性结核病的风险增加(toft an e an toft et aft al and。相比之下,利福丁是一种利福米霉素衍生物,半衰期和抗结核细胞比利福平(Zumla et al。,2015)大几倍。尽管在我们先前报道的作品中开发了含有利福丁的复合支架并植入骨缺陷,但不可能重复给药(Wang Z.等,2021)。因此,要开发一种可以减少药物剂量和频率的递送系统,同时改善局部骨组织的治疗作用似乎是长期药物治疗骨骨结核病的最有前途的选择。当前增强当前药物治疗活性的策略是将药物置于输送系统中。药物输送系统以提高药物分子的渗透性,溶解度和代谢稳定性。在各种系统中,纳米颗粒(NP)具有与自由药物相比的潜在优势,包括增加治疗效果和延长药物释放(Sukhithasri等,2014)。聚合NP由于其良好的生物相容性而被广泛用于临床治疗,并且可以通过正常的代谢途径消除其副产品(Luque-Michel等,2017)。在所有生物材料中,PLGA(Poly-D,L-甲状腺素-CO-糖苷)已获得食品和药物管理局(FDA)的批准,用于生物降解性质引起的生物医学应用(Mir等,2017; Kim等,2019),并且可能是针对靶向,想象,想象,进行靶向和治疗的有益材料。此外,PEG(聚乙二醇)可以进一步提供延长NPS循环的空间屏障(Xu等,2015)。在本研究中,为了使NP延长循环时间和靶骨组织的能力,四环素(TC) - 模化的药物输送系统