4 供应和浇筑符合 IS 456 的设计混合混凝土 M 30 等级,每立方米混凝土最低水泥含量为 400 公斤,使用配料厂(15 立方米/小时),使用 20 毫米 HBG 碎金属 0.512 立方米(708 公斤)、10 毫米 HBG 碎金属 0.354 立方米(472 公斤)和沙子 0.437 立方米(616 公斤),水灰比为 0.45(180 升/立方米混凝土),包括所有材料的成本和运输费用,如水泥、细骨料(沙子)、粗骨料、水和符合 IS 9103-1993 的 1.6 公斤外加剂等,到现场以及所有材料的销售税和其他税费(不包括 GST),包括所有操作、杂费和人工费用,如批量混合、用搅拌车运输混凝土(最长 1 公里)、混凝土泵送、铺设混凝土,固化等,并包括使用钢脚手架管、千斤顶支柱、墙体、脚板、支架、钢定心板等进行定心,完整但不包括钢材成本及其成品的制造费用(APSS 编号 402)
随着清洁能源在全球范围内的进步,人们提出了多种利用污染更少、可再生能源的新方法。减少化石燃料消耗的努力推动了新技术的发展,如由锂离子电池、热电材料、燃料电池、光伏 (PV) 等驱动的电动汽车 (EV)。[3] 这些技术需要大量的材料和矿物。例如,典型的电动汽车电池有超过 6,000 个独立的锂离子电池,总重量约为 500 公斤,其中包括约 11.5 公斤锂、27 公斤镍、20 公斤锰、13.5 公斤钴、91 公斤铜和 180 公斤铝、钢和塑料。从矿石(锂辉石)中提取一吨碳酸锂当量 (LCE) 会产生至少 15.8 吨二氧化碳,而对于盐水,这一数值降至约 0.3 吨二氧化碳(NMC111 化学电池每千瓦时产生 33.9 千克二氧化碳当量)。[4 – 6] 盐水的水足迹为每吨锂约 470 吨水,而岩石开采的水足迹约为 170 吨。清洁能源技术和工艺的开发需要发现新材料,以提高工艺效率,减少碳、水和土地足迹,并最大限度地减少资本支出 (CAPEX) 和运营费用 (OPEX)。使用传统方法发现新材料需要大量的财务和时间投入。评估专利显示,从发现新材料到首次商业使用大约需要 1-2 年的时间。 [7] 全球清洁能源需求的快速增长给研究机构带来了巨大的压力,迫使它们加速发现可用于快速实施清洁能源进程的先进材料。
摘要 本报告探讨了生物肥料作为印度化学肥料可持续替代品的潜力,重点关注其在促进气候适应型农业方面的作用。从历史上看,化学肥料推动了印度农业部门的增长,尤其是在绿色革命之后。然而,化学肥料的广泛使用导致了环境恶化、土壤肥力下降以及由于土壤和水中化学物质积聚而导致的健康风险。认识到这些问题后,印度政府出台了 PM-PRANAM Yojana 等政策,旨在促进生物肥料的使用,减少对化学品进口的依赖,并减轻补贴负担。生物肥料由有益微生物组成,通过改善土壤养分含量和作物产量而没有有害的副作用,提供了一种可持续的解决方案。本报告应用回归分析来预测未来的作物产量,结果表明,到 2064 年,生物肥料在有效性和采用率方面可能会超过化学肥料,这与印度的农业可持续发展目标相一致。最终,本研究提倡更多地采用生物肥料,以确保长期粮食生产,改善土壤健康,并支持印度向可持续农业实践的过渡。 简介 根据 OEC 的数据,印度是世界上最大的化肥进口国之一,其次是巴西、美国和中国,2021 年进口的化肥总额为 80 亿美元。印度每公顷平均施肥量约为 145 公斤,受西孟加拉邦等邦的影响,西孟加拉邦的消费量为 122 公斤/公顷,哈里亚纳邦为 167 公斤/公顷,旁遮普邦为 184 公斤/公顷,北方邦和北阿坎德邦为 127 公斤/公顷,安得拉邦为 138 公斤/公顷,泰米尔纳德邦为 112 公斤/公顷,其余各邦每公顷消费量低于总体平均水平 145 公斤/公顷(Arvind K. Shukla 等人,2022 年)。长期过量使用化肥和粪肥可能会导致重金属在土壤和植物中积聚,并导致重金属含量过高,因为这些重金属会在土壤中积累,然后在植物和动物体内生物累积。尿素的过量使用也是一个令人担忧的问题,因为据报道,这会导致印度与硝酸盐有关的地下水污染加剧。另一个令人担忧的是,磷肥通过地表水流运输,可能会增加饮用水和河流中的磷酸盐含量(Arvind K. Shukla 等人,2022 年)。除了这些有害影响之外,化肥也没有发挥应有的作用。化肥在绿色革命期间和之后给印度农业生态系统带来的促进作用至今尚未持续。相对于所用化肥,粮食产量的增长有所下降。 20 世纪 60 年代施用 1 公斤氮、磷、钾 (NPK) 可产 12 公斤作物,现在减产至仅 5 公斤。同样,氮利用效率(NUE)从20世纪60年代中期的48%下降到2018年的35%。
2018 年,欧盟 27 国产生了 23 亿吨(人均 5190 公斤)废物。成员国的废物产生量从芬兰的人均 23253 公斤到拉脱维亚的 920 公斤不等。四个国家(德国、法国、罗马尼亚、波兰)占欧盟废物总量的 50%。十二个成员国占 91%。在经济活动方面,例如建筑业占总废物产生量的三分之一以上,为 8 亿吨(36%)。2018 年,欧盟 27 国处理了约 21 亿吨废物(人均 4814 公斤)。虽然这不包括出口废物,但包括进口到欧盟 27 国的废物处理。因此,报告的数量不能直接与废物产生量进行比较。超过一半的废物在回收作业中得到处理(54%)。右侧的条形图显示了每个成员国的废物回收和处置情况。
例如:在 iDEX 下申请“带有集成发射控制中心的小型卫星(重量不超过 650 公斤)的可运输/移动发射系统”,创新标题为“挑战 1:带有集成发射控制中心的小型卫星(重量不超过 650 公斤)的可运输/移动发射系统”。
1 不包括粘合剂选项,请参阅粘合剂数据表以了解推荐的温度等级。 2 承受 25 公斤冲击后产品仍可正常工作,为保证 IP68 完整性,最大冲击力应限制在 1 米处 15 公斤以内。可根据要求提供测试方法。
1 IGIM 应在室温下注射。2 IG 应注射给易感高危接触者,即体重 <30 公斤的婴儿和儿童、孕妇和体重 ≥30 公斤的严重免疫功能低下者。3 IGIM 可以给予任何体重 <30 公斤且没有麻疹免疫证据的人,但应优先考虑在频繁、长时间、密切接触环境中接触的人(例如家庭、托儿所、教室等)或更容易患上严重麻疹的人(婴儿、免疫功能低下的儿童)。4 IG 的最大肌肉注射剂量为 15 毫升。5 体重 >30 公斤/66 磅的人不太可能从 IGIM 中获得足够量的麻疹抗体。6 接触麻疹的严重免疫功能低下患者应接受 IGIV 预防,无论免疫或疫苗接种状况如何,因为他们可能无法受到疫苗的保护。根据 CDC 和 IDSA 的说法,高度免疫抑制的人包括: