1 物理系 – 教育学院(Ibn Al-Haitham) – 巴格达大学。伊拉克 2 物理系,科学学院,Al-Mustansiryah 大学,巴格达,伊拉克 Ahmad27@gemail .com,电子邮件:aseelalaziz@uomustansiriyah.edu.iq 摘要。本研究研究了伽马射线屏蔽的一些衰减参数。该屏蔽由不饱和聚酯作为基材,纳米氧化铁(Fe 2 O 3 )和微米铁(Fe)作为增强材料,以不同的百分比(1、3、5、7 和 9)wt%,具有不同的厚度(1、1.5、2、2.5、3、3.5 和 4)cm。结果表明,在辐射屏蔽领域,纳米粒子的使用效果优于微粒。已经证明,在使用纳米粒子的情况下,伽马的衰减参数值比使用微米材料的情况要差。
工具:RO1200材料与许多工具系统兼容。选择是否使用圆形或开槽的引脚,外部或内部固定,标准或中心线(多行)工具,以及pre ded pred vs.后冲孔将取决于电路设施的功能和偏好以及最终的注册要求。一般而言,开槽的销钉,中心线工具格式和后口气的打孔将满足大多数需求。无论采用哪种方法,都可以在工具孔周围保留铜。一般而言,建议只有在使用36或72微米铜箔的加工芯上,只有在加工芯上涂抹芯时,建议使用18微米铜箔在核心两侧的工具孔周围保持铜。
主题 1:开发纳米和微米范围内的力值基准 开发微米和纳米力值基准在先进制造、微机电系统 (MEMS)、微流体、纳米技术以及制药和医疗设备等领域变得越来越重要。高精度表面张力和材料机械性能测量对于改进生产工艺和评估其质量至关重要,特别是在使用涂层或纳米沉积工艺的情况下。在上述领域,正在或已经开发出新的测量技术,关键是将这些技术应用于特定的测量对象并获得最终用户群体的认可。然而,开发这些尺度的力值的准确可靠的测量技术仍处于起步阶段。本提案旨在通过开发微米和纳米力值基准来解决这一差距,这些基准可用于校准和验证这些尺度的力值测量设备的准确性。因此,需要开发新技术和标准,以在低不确定度水平下生成已知的准确可靠的力值测量结果。本博士论文的目标是:1. 开发微力和纳米力的主要标准,可用于校准和验证这些尺度上的力测量设备的准确性。2. 研究表面相互作用、摩擦和粘附对微力和纳米力测量的影响。3. 评估相关的不确定性和影响因素
Shaneyfelt先生·1998·325所引用 - 所有设备都是在Sandia的微电子中制造的。使用浅层式隔离的半微米CMOS技术中的开发实验室。...
轻巧的碳纤维复合材料微块材料(<100 kg/m 3,<100微米特征尺寸的共核)具有出色的可恢复性(> 20%的菌株,而0.5%的应变)
➢ 纳米级高垂直分辨率 ➢ 横向分辨率从几微米到 100 纳米 ➢ 高速 3D 表征 ➢ 无表面磨损或划痕损伤 ➢ 拼接能力可增加最大表征尺寸
• 集成电路发明于 20 世纪 50 年代,如今已无处不在。微电子技术的主要优势: • 单位材料和制造成本低廉 • 可以集成组件 • 微米和纳米级出现新的可能性
了解氧化铝增强铝复合材料 (Al-A2O3) 的循环行为对于其在不同工业领域的进一步应用至关重要。本研究重点关注通过放电等离子烧结 (SPS) 方法和摩擦搅拌焊接 (FSW) 相结合生产的 Al-氧化铝纳米复合材料的循环行为。添加的氧化铝总含量为 10%,是纳米和微米粒子的组合,其比例因样品而异。使用光学显微镜 (OM)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 表征 SPSed 样品的微观结构。表征了加工后的复合材料样品的微观结构并研究了其机械行为。微观结构研究表明,氧化铝的纳米粒子主要分布在晶粒边界和晶粒内部,而微米级粒子主要沉积在晶粒边界上。此外,还根据增强体尺寸和纳米粒子添加百分比分析了生产样品的硬度和拉伸性能。结果表明,纳米复合材料的力学性能和疲劳性能主要取决于初始阶段的材料性能和搅拌摩擦焊的应用条件,如转速和运动速度。纳米复合材料的断裂表面呈现出韧性-脆性复合断裂模式,韧窝更细,纳米弥散体的作用尤为突出。
脊髓损伤(SCI)是一个改变生命的事件,通常导致感觉和运动功能丧失创伤水平。生物材料疗法已在SCI中广泛研究以促进定向再生,但通常受到其预构建的大小和形状的限制。在此,研究了微孔退火颗粒(地图)的设计参数,并使用符合损伤和直接轴突的管状几何形状研究,以支持功能恢复。从20,40和60微米聚乙烯乙二醇(PEG)珠制备的地图管被生成并植入SCI的T9-10鼠半分离模型中。试管减弱神经胶质和纤维状疤痕,增加先天免疫细胞密度,并以珠子尺寸依赖性方式减少炎症表型。由60微米珠组成的管增加了慢性巨噬细胞反应的细胞密度,而中性粒细胞的纤维化和表型不会偏离对照组中的细胞密度。在损伤后8周,由60微米珠组成的试管的植入可增强运动功能,稳健的轴突向内生长和通过流明和管间空间的再髓系。总的来说,这些研究表明,珠子大小在地图结构中的重要性,并突出显示PEG管作为一种生物材料疗法,以促进SCI的再生和功能恢复。