自由空间光通信 (FSOC) 也称为光无线通信,它一直是一个备受关注的话题,因为它利用了红外波段的宽广的未授权频谱,而不是已经拥挤的无线电频谱。当今的 FSO 技术能够在几公里的距离上每秒传输几千兆位的数据。事实证明,FSO 是解决连接问题的唯一可能解决方案,无论在何处安装光纤成本过高或困难重重。DOT 邀请印度初创企业/组织/研究和学术机构参与此合作项目,以开发一种 FSO 解决方案,该解决方案能够在至少 5 公里的距离内提供每波长至少 10G 带宽(全双工)。总带宽将取决于使用的波长数量。潜在参与者应具有光通信相关技术的可证明的专业知识,形式为完全或部分原型光学技术,包括但不限于组件/模块/硬件/软件/子系统或其最终产品。合作开发项目的最终成果应是可商业部署的 FSO 解决方案。项目成果将授权给感兴趣的参与者或第三方,可直接或与系统集成商合作进行大规模生产、营销和为最终用户部署。2)项目描述
原发性线粒体疾病是影响多个器官的进行性遗传疾病,并以线粒体功能障碍为特征。这些疾病可能是由用线粒体定位编码蛋白质的突变引起的,或者是由线粒体基因组(MTDNA)中的遗传缺陷引起的。后者包括点致病变体和大规模缺失/重排。mtDNA分子具有野生型或变体序列可以在单个细胞中共同存在,即一种称为mtDNA杂质者的条件。mtDNA单点突变通常是通过基于简短读数的下一代测序(NGS)检测到的,但是,这些读数受到识别结构mtDNA改变的限制。最近,已经发布了基于长读数的新NGS技术,从而可以获得长度的几千酶序列。该方法适合检测影响线粒体基因组的结构改变。在目前的工作中,我们说明了基于长阅读牛津纳米孔技术的两种测序方案的优化,以检测mtDNA结构变化。与简短读取NG和传统技术相比,这种方法在MTDNA的分析中具有很强的优势,有可能成为MTDNA遗传研究的选择方法。
一般特性。铝及其合金具有独特的性能组合,使铝成为用途最广泛、最经济、最具吸引力的金属材料之一,从柔软、高延展性的包装箔到要求最严格的工程应用。铝合金作为结构金属的使用量仅次于钢。铝的密度只有 2.7 g/cm 3 ,大约是钢(7.83 g/cm 3 )的三分之一。一立方英尺的钢重约 490 磅,而一立方英尺的铝只有约 170 磅。如此轻的重量,加上一些铝合金的高强度(超过结构钢),使我们能够设计和建造坚固、轻便的结构,这种结构对任何运动物体都特别有利,例如航天器和飞机以及所有类型的陆地和水运工具。铝能抵抗导致钢生锈的那种逐渐氧化。铝的暴露表面与氧气结合形成一层厚度仅为几千万分之一英寸的惰性氧化铝膜,阻止进一步氧化。而且,与铁锈不同,氧化铝膜不会剥落,露出新的表面,从而进一步氧化。如果铝的保护层被刮伤,它会立即重新密封。薄薄的氧化层本身紧紧贴在金属上,无色透明——肉眼看不见。铁和钢的变色和剥落
摘要:手术机器人已经使用了大约三十年,主要是在高收入国家。在本文中,我们专注于匈牙利引入的经验,该特定机器人系统来自美国Da Vinci手术系统。自1995年以来由美国公司直观制造和分发,该外科系统已在全球范围内用于超过一千万个手术程序,大约有60,000名专家接受了操作。在匈牙利,机器人系统由Sofmedica Healthcare Group分发。除了匈牙利,该公司还在罗马尼亚,希腊,保加利亚和塞浦路斯运营。在匈牙利,该公司有八个活跃的机器人项目。机器人辅助手术干预始于2022年,一些医疗机构于2023年接受DA Vinci系统。因此,目前完成的手术数量为几千。在对文献的综述期间,我们发现有关机器人系统的出版物侧重于三个主要领域:机器人技术的发展,腹腔镜和机器人辅助手术结果的比较和优势,以及对机器人获取的成本效益分析。根据可用信息,我们介绍了过去两年的匈牙利经历的发现,尤其是Győr-Moson-Sopron县大学教学医院的发现。
在研究生物神经网络等复杂动态系统时,模拟是继实验和理论之后的第三大支柱。当代脑规模网络对应于几百万个节点的有向随机图,每个节点的入度和出度为几千条边,其中节点和边分别对应于基本生物单位、神经元和突触。神经元网络中的活动也很稀疏。每个神经元偶尔会通过其传出突触向相应的目标神经元发送一个短暂的信号(称为尖峰)。在分布式计算中,这些目标分散在数千个并行进程中。空间和时间稀疏性代表了传统计算机上模拟的固有瓶颈:不规则的内存访问模式导致缓存利用率低。使用已建立的神经元网络模拟代码作为参考实现,我们研究了恢复缓存性能的常用技术(例如软件诱导预取和软件流水线)如何使实际应用程序受益。算法更改可将模拟时间缩短高达 50%。该研究表明,分配了本质上并行计算问题的多核系统可以缓解传统计算机架构的冯诺依曼瓶颈。
SEP 能量从超热能(几千电子伏)到相对论能(质子和离子为几千兆电子伏)对空间环境表征具有重要影响。它们与太阳耀斑和 CME 驱动的冲击波一起从太阳发射。SEP 事件构成严重的辐射危害,对依赖航天器的现代技术以及太空中的人类构成威胁。此外,它们还对航空电子设备和商业航空构成威胁。因此,必须制定缓解程序。HESPERIA H2020 EU 项目开发了新型 SEP 事件预测工具,并高度依赖于这些工具来缓解 SEP 事件。这些预测工具以及针对它们所预测事件的科学研究自然存在一些共同的局限性,例如基础数据的可用性和质量。可以说,空间天气应用最重要的数据源之一是 1995 年发射的 NASA/ESA SOHO,它自 1996 年以来一直绕拉格朗日点 L1 运行。该航天器的科学有效载荷由几台远程和现场仪器组成,包括 EPHIN,这是一台视场约为 83 的粒子望远镜,几何因子为 5.1 cm2sr,可测量能量在 0.25 至 10.4 MeV 之间的电子以及能量范围在 4.3 至 53 MeV/核子以上的质子和氦
关于使用 ASRS 数据的注意事项 使用 ASRS 数据时需注意某些事项。所有 ASRS 报告均为自愿提交,因此不能视为对类似事件全部群体的测量随机样本。例如,我们每年会收到几千份高度偏差报告。这个数字可能占到所有高度偏差的一半以上,也可能只是总发生次数的一小部分。此外,并非所有飞行员、管制员、机械师、乘务员、调度员或航空系统的其他参与者都同样了解 ASRS 或可能同样愿意报告。因此,数据可能反映出报告偏差。这些偏差并不完全为人所知或无法测量,可能会影响 ASRS 信息。诸如近距离空中相撞 (NMAC) 之类的安全问题可能似乎在区域“A”比区域“B”更集中,这仅仅是因为在区域“A”中运行的飞行员更了解 ASRS 计划,并且更倾向于在发生 NMAC 时报告。任何类型的主观、自愿报告都会有这些与定量统计分析相关的限制。从 ASRS 数据中可以了解到的一件事是,收到的有关特定事件类型的报告数量代表了正在发生的此类事件的真实数量的下限。例如,如果 ASRS 在 2010 年收到 881 份轨道偏差报告(这个数字纯粹是假设的),那么可以肯定的是,至少有 881 份
过去几千年来,传统育种已成功选育出有益的食品、饲料和纤维作物特性。上个世纪,技术取得了重大进步,特别是在标记辅助选择和诱导遗传变异的产生方面,包括过去几十年通过突变育种、基因改造和基因组编辑取得的进步。虽然传统品种开发和转基因基因改造的监管框架已广泛建立,但许多地区缺乏或仍在制定基因组编辑的监管框架。特别是,基因组编辑植物中缺乏“外来”重组 DNA,并且由此产生的 SNP 或 INDEL 与传统育种中的 SNP 或 INDEL 难以区分,这对制定新立法提出了挑战。如果基因组编辑和其他新型育种技术的产品不具有转基因,并且可以通过传统方法产生,我们认为,应用对传统育种和新型食品已经存在的同等立法监督是合乎逻辑和相称的。本综述分析了传统植物育种活动中可选择的自发和诱发遗传变异的类型和规模。它提供了一个基准,可以据此判断基因组编辑技术或其他反向遗传方法带来的遗传变化是否确实与使用传统植物育种方法经常发现的变化相当。
混合果园,种植了不同种类的树木作物,是一种传统的种植系统的形式,在地中海几千年中实践,并提供了碳固存的重要生态系统服务。我们根据现有文献和来自49个果园的数据使用了六个异形方程(M1-M6),以估计基于干生物量的C含量,以估计树的总生物量(TB)和碳固醇。A species/geographically-specific equation (M1), a genus-specific (M2), a genus/geographically-specific forest equation (M3), two generalized forest allometric equations (M4 and M5) and a generalized agricultural landscape equation (M6) were compared and yielded an average of 15.42, 10.80, 11.39, 6.12, 6.66, and 9.88 Mg c ha -1分别。在同一生产阶段的有机果园和常规果园在CO 2隔离(CO 2 SEQ)每树(分别为10.42和10 kg CO2EQ)中彼此之间没有显着差异。等式M1被认为是在多年生地中海果园中使用的最具代表性(物种和环境)。使用易于测量的树木的生物识别特性,提出了一种简单,有效,有效的方法来估算混合果园中的CO 2隔离方法。这些发现对于未来对CO 2股票的农业景观库存很重要。
随着全球反恐战争 (GWOT) 进入第四个年头,无人机 (UA) * 在飞行架次、飞行时长和任务扩展方面的贡献不断增加。截至 2004 年 9 月,大约有 20 种大大小小的联盟无人机在支持持久自由行动 (OEF) 和伊拉克自由行动 (OIF) 时飞行了超过 100,000 小时。它们曾经只负责侦察,现在与打击、部队保护和信号收集共享,这样做有助于降低传感器到射手链的复杂性和时间滞后,以便根据“可操作情报”采取行动。无人机系统 (UAS) 不断扩展,涵盖了广泛的任务能力。这些不同的系统的成本从几千美元到数千万美元不等,能力范围从重量不到一磅的微型飞行器 (MAV) 到重量超过 40,000 磅的飞机。 UA 和一般的无人系统正在改变全球反恐战争中军事行动的开展方式,它们可以进行不间断的追击,而不会给恐怖分子提供高价值目标或潜在的俘虏。随着国防部 (DoD) 在未来 25 年(2005 年至 2030 年)开发和使用日益复杂的无人系统部队,包括 UA,技术人员、采购官员和作战规划人员需要制定一个清晰、协调的计划,以实现这种能力的演变和过渡。本路线图的总体目标是遵循战略