摘要 汽车发动机具有出色的质量控制和极高的成本效益。这是精益、大规模生产的典型特征。因此,将这些发动机应用于飞机最具吸引力。超轻型运动飞机率先采用了这种方法。市场上已经有几款汽车飞机认证的发动机。然而,这种方法并没有像几年前预见的那样成功。这是由于汽车应用和飞机使用之间的差异。这些差异导致了初期问题,这些问题在近 20 年的研究工作中得到了解决。现在达到的水平和获得的经验使得将任何“成功”的汽车发动机转换为飞机发动机成为可能。这项工作从描述汽车制造商提供的数据开始。汽车发动机具有大量关于性能、可靠性和 TBO(大修间隔时间)的统计数据背景。这些数据与飞机应用的相关性并不简单。然后介绍可从新飞机发动机获得的性能曲线。最后,算法计算汽车发动机的剩余寿命与 TBO(大修间隔时间)。该方法已在几台小型上一代 CRDID(共轨直喷柴油机)和火花点火(汽油)发动机上进行了测试。这些发动机还被改装用于功率从 60 到 200HP 的小型飞机。T
首先,我要感谢 Rogelio Lozano 教授邀请我加入墨西哥的 CINVESTAV-IPN / CNRS UMI3175 LAMFIA Cinvestav,没有他,这篇论文就不可能完成。他鼓励我继续研究一个非常创新的概念,并帮助我调查其可行性。我感谢他贡献的所有时间和想法。我非常感谢墨西哥政府在他的支持下为我提供的奖学金。此外,这篇论文受益于该实验室和 ISAE SUPAERO(法国图卢兹)在 Patrick Fabiani 博士的指导下进行的联合监督。我得到了无人机概念所依赖的两个科学领域的顶尖研究人员的建议和指导:航空学和控制系统。我非常感谢我的论文指导老师 Rogelio Lozano 教授、Moisés Bonilla Estrada 教授和 Patrick Fabiani 博士,感谢他们在这项研究中对我的科学跟进和提出的深刻见解。我还要感谢 Cinvestav 和 ISAE SUPAERO 的所有工作人员和同事在过去三年中给予我的帮助。我特别感谢在无人机演示器开发过程中提供的帮助以及允许我使用几台原型机。最后,我要向我的家人表示最深切的谢意,感谢他们在这段丰富而漫长的冒险中给予的不懈支持。我要特别感谢我的兄弟 Adrien Cabarbaye 在电子学、计算机科学和英语方面的支持。
詹姆斯·韦伯太空望远镜 (JWST) 1 光学望远镜元件 (OTE) 是一个三镜消像散镜,由一个直径 6.5 米、分段式轻型主镜 (PM)、一个次镜和一个三镜组成。测量结构是一种轻型碳纤维复合结构(图 1)。轻型镜和结构技术开发以及望远镜是否满足其在轨性能要求需要最先进的干涉测量法,该干涉测量法具有高灵敏度、快速曝光时间和对振动不敏感的特点。瞬时相移干涉测量法满足了这些要求,其中像素化相位掩模允许同时捕获所有四个相移干涉图。这项技术是关键特性,使我们能够成功展示 JWST 望远镜轻型镜和大型轻型复合结构所需的技术就绪水平,制造主镜部分并验证其在低温下的性能,在环境测试之前和之后对完全组装的望远镜进行曲率中心测试,并在约翰逊航天中心在低温下对主镜进行相位调整。 4D Technology(现为亚利桑那州图森市 Onto Innovation 的子公司)为 JWST 项目建造了几台专用干涉仪(图 2),包括 PhaseCam、电子散斑干涉仪 (ESPI)、高速干涉仪 (HSI) 和多波干涉仪。
最近,量子计算重新引起了人们的关注,因为已经报道了几台较大规模的量子计算机,例如 [1]。容错量子计算(FTQC)[2]被认为是实现大规模量子计算机必不可少的。FTQC 对量子纠错码(QECC)中的码字执行计算,而不将其解码为原始信息。量子纠错可以分为两大类,一类是经典信息(比特序列)的传输,另一类是量子信息的传输。FTQC 依赖于后者,因为量子计算机的内存由量子信息组成。本综述也关注后者。我们假设读者熟悉传统纠错理论和初等代数。特别是,假设读者具备张量积的知识。熟悉这些知识后,本文就可以自洽地阅读了。尽管本综述只对量子信息做了最低限度的回顾,我们仍推荐 [3] 作为一本不错的量子信息入门教材。传统的纠错码是通过在原始信息中添加冗余来纠正经典信息中的错误。量子不可克隆定理 [4] 认为,这种冗余的添加是不可能的,量子纠错也是不可能的。然而,Shor 通过明确提供 QECC 的例子 [5] 推翻了这种天真的信念,这引发了人们对 QECC 的广泛研究关注,当时提出了许多 QECC 的构造方法。其中,QECC 的重要类别是所谓的 Calderbank-Shor-Steane (CSS) 码 [6],[7] 和稳定
个性化医学将成为预防和治疗方面最有效,最可持续的实践方式。如今,个性化医学的关键促进技术是3D打印或添加剂制造(AM),如今较为众所周知。在概念上简单但根本上扎根的方法在构建对象中,即来自数字蓝图的层层。根据所使用的AM技术,物体的材料可以是塑性,金属甚至某些人体组织。Szeged大学(3DC)的3D打印中心最近被推出,以合并和增加大学内相关研究团队的了解,并向那些新手解决AM的潜力的人开放机会。3DC的主要重点是生命科学,并配备了高端成像和3D打印仪器。我们的金属打印机能够在广泛的高科技材料组合中打印,但也可以使用医学级钛和不锈钢合金运行,适合植入物和医疗仪器。我们有两台专业的高分辨率树脂3D打印机,能够打印甚至生物相容性材料。3DC正在用机械和气动打印机来解决生物打印,而我们的几台SLA和FDM技术的台式打印机都在教学方面进行了教学。最后但并非最不重要的一点是,也可以使用其他几种辅助仪器,例如3D光学显微镜,一种动态的机械测试仪,但要提到一些。
初步观察记录于 19 世纪初欧洲工业革命期间。在此期间,多条铁路、重型机车和发动机在经过长时间运行后意外发生故障。1829 年,W.A.S. Albert 在对铁链进行循环载荷试验时发现了这种故障 [1,2]。随后,在 1837 年,他在一本杂志上报道了循环载荷与金属寿命之间的关系。根据这一观察,铸铁车轴设计师 J.V. Poncelet 使用了“fatigare”一词,英国的 F. Brainthwaite 于 1854 年将其命名为疲劳 [3,4]。1842 年,法国凡尔赛附近发生了最严重的铁路灾难之一。途中几台机车的车轴断裂。经 W.J.M. 检查后,英国铁路的 Rankine 发现后,证实车轴发生了脆性断裂 [2]。根据这一观察,August Wöhler 在机车车轴失效方面进行了一些开创性的工作,为疲劳理解奠定了基础。Wöhler 绘制了克虏伯车轴钢数据与应力 (S) 和失效循环数 (N) 的关系图。该图后来被称为 S-N 图 [5,6]。S-N 图可用于预测金属的疲劳寿命和持久极限,即应力的极限阈值,低于该阈值,工程材料将表现出很高或无限高的疲劳寿命。因此,A. Wöhler 被认为是现代疲劳技术的鼻祖 [7]。1886 年,J. Bauschinger 发表了第一篇
第 1 页 ______________________________________________________________________ 电子计算机历史:1940-2000 C. Piguet CSEM 瑞士电子和微技术中心 SA Maladière 71,2000 瑞士纳沙泰尔 摘要 本文的目的是介绍电子计算机的历史。 第一台电子计算机 ENIAC 于 1945 年问世。它是帕斯卡和巴贝奇提出的真空管电子版计算器。现代计算机组织归功于冯·诺依曼。多台计算机都是根据冯·诺依曼架构设计的,例如第一台商用机器 UNIVAC,随后是 IBM 701 和 702。下一步是用更可靠、更小、更快的晶体管取代真空管。提供了编程语言,例如 FORTRAN 和 COBOL。下一代计算机(如 IBM 360 系列)的基本架构和语言不会发生重大变化。只是实现方式完全不同,它基于使用集成电路的微程序和流水线架构。 1. 简介 六十年的电子计算机提供了一个非常有趣的故事。计算机的引入彻底改变了我们的生活方式。今天,每个工作场所都有一台计算机。每个家庭每天都会使用几台个人计算机。每笔财务交易都由计算机完成。 故事始于 1945 年第一台电子计算机。40 年代末,艾肯认为英国将需要 2 到 3 台计算机 [1] !三十年后,即 1975 年,第一批微处理器可用于个人计算机。今天,个人计算机网络能够通过互联网进行通信,以访问存储在数据库中的大量知识。迈向计算机的第一步是设计机械自动机,
在人类连接组计划的带动下,具有超高梯度强度的扫描仪的开发显著提高了体内扩散 MRI 采集的空间、角度和扩散分辨率。可以利用改进的数据质量来更准确地推断微观结构和宏观结构解剖结构。然而,这种高质量的数据只能在全世界少数几台 Connectom MRI 扫描仪上采集,而且由于硬件和扫描时间的限制,在临床环境中仍然无法使用。在本研究中,我们首先更新了基于纤维束成像的手动注释主要白质通路的经典协议,以使其适应当今最先进的扩散 MRI 数据所能产生的更大体积和更大变化的流线。然后,我们使用这些协议手动注释来自 Connectom 扫描仪的数据中的 42 条主要通路。最后,我们表明,当我们使用这些手动注释的通路作为具有解剖邻域先验的全局概率纤维束成像的训练数据时,我们可以在质量低得多、更广泛可用的弥散 MRI 数据中对相同的通路进行高精度、自动重建。这项工作的成果包括来自 Connectom 数据的 WM 通路的全新综合图谱,以及我们的纤维束成像工具箱的更新版本,即受基础解剖学约束的 TRActs (TRACULA),该工具箱使用该图谱中的数据进行训练。图谱和 TRACULA 均作为 FreeSurfer 的一部分公开分发。我们首次全面比较了 TRACULA 与更传统的多感兴趣区域自动纤维束成像方法,并首次演示了在高质量 Connectom 数据上训练 TRACULA 以造福使用更温和的采集协议的研究。
要使波浪能实现商业可行性,大多数概念都要求将波浪能转换器部署在阵列、公园或农场中,如图 9.1 至 9.3 所示。这将降低电力子系统(例如电缆和带有变压器和其他电力电子设备的变电站)、系泊和地基、波浪测量仪器、维护和维修(船舶、起重机和更换部件)以及聘用具备所需专业知识的人员所需的基础设施成本。当波浪能转换器作为大型装置的一部分建造时,每个波浪能转换器的成本将会降低,而当设备安装在农场中时,单位海洋面积产生的能量将会增加。此外,可以在大多数波浪能转换器仍在运行的同时对少数波浪能转换器进行维护,这种冗余提高了所发电量的可靠性。根据波浪能转换器技术的不同,农场可以由几台设备到几百个部件组成。每个波浪能发电厂都会改变发电厂内外的波浪场,而产生的波浪场将是所有设备发出的所有散射波和辐射波的复杂叠加,这又会影响每个波浪能发电厂的动态。由于波浪会散射并沿所有水平方向传播,发电厂后方(入射波方向)的波浪能发电厂会影响背风区域的波浪能发电厂,使波浪发电厂的相互作用比风力发电厂的类似情况更为复杂。因此,要了解波浪发电厂的动态和性能以及发电厂外产生的波浪条件,必须充分了解流体动力学相互作用。由于这些将取决于许多参数,例如发电厂的布局、波浪能发电厂之间的间隔距离、系泊和 PTO 配置、波浪能发电厂的尺寸和特性、波浪条件和方向、水深测量等,因此问题的复杂性非常大,并且会随着相互作用设备的数量而增加。由于波浪发电厂的远场效应可能会影响波高和沉积物输送,对发电厂所在地的当地环境产生积极或消极的影响
使用压电设备从空调冷凝器中收集能量 摘要 使用校园内的几台空调机组来确定空调冷凝器机组中潜在的废能来源,并设计了能量收集方法。这些能量收集方法称为使用压电设备的振动和气流驱动能量收集。目标是从排气流中产生电能(类似于喷气发动机的加力燃烧器,但规模要小得多)。对于压电设备,想法是使设备振动以产生电能。工程技术课程的学生和教师研究了空调机组,以确定潜在的废能来源。根据季节、振动水平和冷凝器的排气扇流量进行测量以确定运行时间。进行了测量,并与计算出的从冷凝器中获取的潜在功率进行了比较。这个本科研究项目是全校范围内为促进节能和研究使用清洁可再生能源而开展的几项工作之一。简介 压电性一词源于希腊语 piezein ,意思是挤压和按压。直接效应和逆效应是两种压电效应。在直接效应中,电荷由机械应力产生。在逆效应中,施加电场会产生机械运动。压电能量收集利用直接效应,k p 、k 33 、d 33 、d 31 、g 33 是压电材料特性的特征。k 因子,称为压电耦合因子,是方便直接测量机电效应整体强度的典型方法 [1-4]。压电能量收集是一种通过应变压电材料将机械能转化为电能的方法 [5]。压电材料的应变或变形会导致整个设备中的电荷分离,产生电场并导致与施加的应力成比例的电压降。振荡系统通常是悬臂梁结构,在杠杆的未连接端有一个质量,因为它为给定的输入力提供更高的应变 [6]。产生的电压随时间和应变而变化,平均而言有效地产生不规则的交流信号。压电能量转换产生的电压和功率密度水平比电磁系统相对较高。此外,压电效应能够从机械应力中产生晶体和某些类型陶瓷等元素的电势 [7]。如果压电材料未短路,则施加的机械应力会在材料上产生电压。用于清除振动能量的最常见设备类型是悬臂压电设备,它通过弯曲、摇晃和变形来发电 [8]。有许多基于压电材料的应用,例如电动打火机。在这个系统中,按下按钮会导致弹簧锤击中压电晶体,产生的高电压会跨越小火花间隙,从而点燃可燃气体。按照同样的想法,便携式打火机用于点燃燃气烤架和炉灶,以及各种