菱形堆叠的几层石墨烯(FLG)显示出奇特的电子特性,这些特性可能导致现象,例如高温超导性和磁性排序。迄今为止,经验研究主要受到厚度超过3层和设备兼容大小的菱形flg的困难限制。在这项工作中,我们证明了菱形石墨烯的合成和转移,厚度高达9层,面积高达〜50 m m 2。通过拉曼光谱法鉴定了菱形FLG的结构域,并在类似条纹的构造中发现与同一晶体内的伯纳尔区域交替。接近局限的纳米成像进一步确定了相应堆叠顺序的结构完整性。组合的光谱和微观分析表明,菱形堆积的形成与基础铜施加块密切相关,并导致沿着优先晶体学方向沿着层间位移而出现。菱形对厚度和大小的生长和转移应促进预测的非常规物理学的观察,并最终增加其技术相关性。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
a 马德里自治大学 (UAM) 分析化学与仪器分析系,28049,马德里,西班牙 b 微纳米技术研究所 IMN-CNM,CSIC (CEI UAM + CSIC),28760,Tres Cantos,马德里,西班牙 c 马德里自治大学无机化学系和凝聚态物理中心 (IFIMAC),28049,马德里,西班牙 d 马德里自治大学化学科学高级研究所 (IAdChem),28049,马德里,西班牙 e IMDEA-Nanociencia,Ciudad Universitaria de Cantoblanco,28049,马德里,西班牙 f 拉蒙·卡哈尔大学医院微生物学服务中心和拉蒙·卡哈尔健康研究所 (IRYCIS),28034,西班牙马德里 g 西班牙马德里卡洛斯三世卫生研究所传染病网络生物医学研究中心 (CIBERINFEC) h 西班牙马德里流行病学和公共卫生网络生物医学研究中心 (CIBERESP)
摘要:在石墨烯兴起后2D材料的最新成功的激增中,由于其独特的纳米级特性的结合,钼(2D-MOS 2)(2D-MOS 2)一直在基本和应用的视点中引起人们的注意。例如,2D-MOS 2的带隙从直接(以批量形式)变为超薄纤维(几层)的间接(几层),为光电子学中的各种应用提供了新的前景。在这篇综述中,我们介绍了2D-MOS 2薄膜的合成和表征范围的最新科学进步,同时着重强调了它们在能量收集,气体传感和等离子设备中的某些应用。对2D-MOS 2的物理和化学处理途径的调查首先提出,然后详细描述并列出了用于研究其有趣的光学特性的MOS 2纳米材料以及理论模拟的最相关特征技术。最后,讨论了与高质量合成和相当可控制的MOS 2薄膜有关的挑战,并将其整合到新型功能设备中。
b'composites,[14 \ xe2 \ x80 \ x9316]聚合物粘合剂,[17 \ xe2 \ x80 \ x9319]和添加剂[19,20],以改善Li-Cells中的Si-Electrode性能。涉及硅阳极中的金属碳化物是尚未探讨增加容量和循环寿命的另一种策略。首先,据报道,具有特定微观结构的复合硅/wolfram碳化物@石墨烯可维持较高的初始库仑效率和长期循环寿命,从而减轻了结构变化。[21]相反,金属碳化物(mo 2 C,Cr 2 C 3等)以Si Cr 3 C 2的形式 @几层石墨烯和Si Mo 2 C @几层石墨烯电极的据报道,具有良好的电化学性能。[22]此外,碳化物通常还可以提供出色的导电骨架,以提高Si的电子电导率,这要归功于纳米导电通道的存在,从而降低了电子转移电阻。[23,24]'
图3。照片和拉曼2层的电化学测量。(a)在PMMA涂层的SI底物上的光学微图和MOS 2片。(b)选定的单层/几层/散装薄片区域的AFM显微照片。(c)光电化学设置的示意图。(d)E 2G /SI强度比的拉曼图。(e)PL强度图在690 nm波长处。(f)和(g)拉曼光谱分别显示了两个主MOS 2频段和Si频段,以及它们的MOS 2层数量。(h)单层/几层/块状MOS 2的PL光谱。分别通过浅蓝色和深蓝色正方形在(a)中指示了用于AFM测量的区域(B)和Raman(d)和PL(E)地图。在(d,e)中以彩色十字表示的斑点记录了拉曼和PL光谱。(经[50]的许可转载。版权所有2016年美国化学社会。)
1研究,技术农业和食品部(IDIA),单一研究研究(CSIC),CTRA。ofcoruña,km gmoles@ciimar.up.pt(G.M.); (M.C。<。); (A.V.); (G.P.-R。); 2 MATE RIAUX(CRIMAT)的研究中心和Marinha跨学科中心,科学搜索国家中心(CNRS),法国图卢兹31400 AV Edouard Belin 16;信件:jmnavas@inia.csic.es;电话。: +34-9
提出的工作证明了首次在水基溶液中直接在水基溶液中直接烧蚀甘芬醇直接合成了纳米材料包裹的激光诱导的几层石墨烯。激光诱导的多层石墨烯 - 氧化物(GO)嵌入了galfenol(gallium – Inroy Alloy)纳米颗粒(NPS)(NPS)是通过直接在Deionization(DI)水中的散装galfenol直接铭文(DI)水中用flestoctecond laser laser烧蚀而产生的。通过在1040 nm处辐射近红外(IR)飞秒激光器在溶液中浸没在溶液中的溶液和较小浓度(5%/wt。) 聚乙烯基吡咯烷酮的,然后在纯di水中进行第二次消融。 结果显示,纳米颗粒的平均直径约为30 nm,嵌入了go板中,可见折叠的折叠折叠在约0.63 nm处。 在激光消融过程中,铁和凝胶移位的组成少于2%,而几层GOETS的组成表现出与散装石墨相似的拉曼峰。,然后在纯di水中进行第二次消融。结果显示,纳米颗粒的平均直径约为30 nm,嵌入了go板中,可见折叠的折叠折叠在约0.63 nm处。在激光消融过程中,铁和凝胶移位的组成少于2%,而几层GOETS的组成表现出与散装石墨相似的拉曼峰。
NASP 解决方案使用迁移学习的原理,其中负责原始数据预处理的神经网络的大多数层(1)在一定数量的训练周期后保持不变(固定模拟核心),并且只有最后几层(2)在接收新数据和重新训练时进行更新(灵活数字核心)。
khan,U.,O'Neill,A.,Boland,C.,Lotya,M.,Istrate,O.M.,King,P.,Higgins,T.可通过液体中的剪切去角质来剥落大量无缺陷的几层石墨烯。自然材料,13(6),624–630。21。Splendiani,A.,Sun,L.,Zhang,Y.,Li,T.,Kim,J.,
墨西哥航空业预计到2029年将增长到110亿美元。制造业和该国低生产成本的有利生态系统正在吸引航空航天制造公司的投资,从而推动市场增长。墨西哥制造商的功能包括几层,2和3个组件,范围从涡轮机,机身和喷气发动机的传感器到机身的紧固件。在墨西哥采购的组件的物流成本下降,影响了全球公司,将墨西哥视为应对供应链问题并减少支出的可行解决方案。