在下面几行中,回答以下问题:你认为我们的社会应该用可再生资源取代不可再生资源作为我们的主要(最重要的)能源吗?为什么或为什么不?从文章中至少提到一个关于不可再生资源的事实和一个关于可再生资源的事实。
航空发动机的一个重要问题是量化大修前的剩余寿命。本文描述的算法可以以良好的可靠性计算汽油活塞发动机的剩余寿命。该方法已在小型、最新一代、自然吸气飞机和赛车活塞发动机上进行了测试,并在多项实验中证明是有效的。该方法直接在发动机的电子控制系统上实现,仅需几行 C 代码。该方法也可用于许多工业发动机。这种创新方法假设只有两个主要因素(功率水平和磨损)会影响发动机的耐用性或大修间隔时间。这两个因素被视为独立的,并与最坏情况标准相结合。假设磨损遵循对数定律,并使用类似于材料疲劳 Miner 定律的公式,这样只需了解两个点就可以计算出功率水平曲线。磨损曲线也与发动机循环次数有关。该算法非常简单,只需几行软件代码访问从现有传感器收集的数据即可实现。该系统目前用于评估赛车发动机的实际剩余寿命。
TI 灵活的软件架构和开发环境让您可以在任何地方训练模型,并使用您最喜欢的行业标准 Python 或 C++ 应用程序编程接口 (API)(来自 TensorFlow Lite、ONNX RunTime 或 TVM 和 SageMaker Neo with Neo AI DLR 运行时引擎)仅用几行代码即可将其编译并部署到 TI 硬件上。在这些行业标准运行时引擎的后端,我们的 TI 深度学习 (TIDL) 模型编译和运行时工具让您可以为 TI 硬件编译模型,将编译后的图形或子图部署到深度学习硬件加速器上,并从处理器获得最佳推理性能,而无需任何手动工具。
在积聚X射线脉冲星中,中子星通过增生磁盘从伴侣恒星中产生了重要的东西。旋转中子恒星的磁场破坏了磁盘的内边缘,将气体漏斗以流到其表面的极点上。Hercules X-1是距地球约7 kpc的典型持续X射线脉冲星。 它的发射在三个不同的时间尺度上有所不同:中子星每1.2 s旋转一次,每1.7 d每1.7 d会黯然失色,并且该系统的超晶型周期为35 d,自发现以来一直保持稳定。 几行证据指出了这种变异的来源是吸积盘或中子恒星的进动。 尽管在过去的50年中有许多提示,但中子恒星本身的动力尚未得到证实或被驳斥。 X射线极化测量(用成像X射线极化探索器探测其X-1的自旋几何形状)表明,Neutron Star Crust的自由进动在35 d期间设置;这具有重要的含义,即它的外壳在某种程度上不对称,每100万份。Hercules X-1是距地球约7 kpc的典型持续X射线脉冲星。它的发射在三个不同的时间尺度上有所不同:中子星每1.2 s旋转一次,每1.7 d每1.7 d会黯然失色,并且该系统的超晶型周期为35 d,自发现以来一直保持稳定。几行证据指出了这种变异的来源是吸积盘或中子恒星的进动。尽管在过去的50年中有许多提示,但中子恒星本身的动力尚未得到证实或被驳斥。X射线极化测量(用成像X射线极化探索器探测其X-1的自旋几何形状)表明,Neutron Star Crust的自由进动在35 d期间设置;这具有重要的含义,即它的外壳在某种程度上不对称,每100万份。
关键词:方法论、敏捷、工作流、资格、架构、安全决策、可信通信、工具摘要(几行):此交付物提供了初始的 COMP4DRONES 方法和工作流程。首先,由于项目处于早期阶段,因此提供了用于收集需求和衡量项目成功标准的方法。其次,我们介绍了定义整体项目方法所需的一组关键概念,例如无人机系统开发流程、无人机类别、U-Space 和 SORA(特定操作风险评估)。第三,从不同角度介绍了开发无人机系统的需求。第四,描述了开发航空电子软件的系统工程方法的状态。最后,我们介绍了基于重用的敏捷无人机系统开发方法的早期愿景,以及改进现有技术以实现无人机轻松定制及其安全操作所面临的挑战和预期项目贡献。
摘要摘要:尽管有大量用于OMICS数据功能分析的方法,但对结果的全面详细了解仍然具有挑战性。这主要是由于缺乏可视化此类信息的公共可用工具。在这里,我们提出了一个基于GGPLOT2的R软件包,用于增强图形表示。我们的软件包采用了任何一般富集分析的输出,并以不同级别的详细信息生成图:从一般概述到确定最丰富的类别(条图,气泡图)到更详细的视图,显示在给定的类别中显示不同类型的分子信息(圈子图,和弦图,集群,集群图)。该软件包提供了对OMIC数据的更深入的见解,并允许科学家使用只有几行代码来生成洞察力,以轻松传达发现。可用性:R软件包GoPlot可通过CRAN-The综合R档案网络提供:http://cran.r-project.org/web/packages/goplot。可以在以下网址找到Venn图的闪亮Web应用程序:https://wwalter.shinyapps.io/venn/联系:fscabo@cnic.es; mricote@cnic.es补充信息:可以在https://wencke.github.io/
使用降低的复杂性气候模型(RCM)的主要优势是它们快速进行概率气候预测的能力,这是许多影响研究和多部门系统中不确定性量化的关键组成部分。提供此类分析的框架已成为用于人类和地球系统未来共同发展的几个RCM的目标。在本文中,我们提出了Matilda,这是一种开放科学的软件软件包,促进了概率的气候投影分析,并在此处使用Hector简单气候模型在无缝且易于应用的框架中实施。MATILDA的实践目标是为用户提供一种交钥匙方法,以构建基于文献的先前分布,运行Hector迭代以产生扰动的Parame semembles(PPES),对现实主义的重量结合体,针对观察到的历史气候数据的现实主义和对不同气候变量的概率预测。此工作流程使用户能够探索可行的参数空间并传播不确定性,以仅使用几行代码来模型合奏。该软件包为选择不同的评分标准和算法提供了重要的自由度,以便加权集成成员以及实施自定义标准的灵活性。此外,包装的体系结构简化了构建和分析PPE的过程,而无需大量的编程专业知识,以适应各种用例。我们提出了一个案例研究,该案例研究提供了对平均全球表面温度的概率分析的幻觉结果,作为软件应用的一个例子。
首先,我要感谢AuvergneRhône-Alpes地区为这项研究工作提供资金,以及加拿大自然科学和工程研究委员会(CRSNG)和魁北克省的技术和技术研究基金(FRQNT)在加拿大留下了财务支持。,很难(即使不是不可能)在几行中表达我对许多人支持我,在这些漫长的论文中提供帮助或伴随的巨大感激之情。不可否认的是,在本手稿中获得和提出的所有结果都是集体工作的果实,没有下面提到的每个人的贡献,以及我不由自主地忘记的所有人员,这是什么不可能的。在两大洲之间进行共同论文,可以被证明是一项测试。另外,我的第一个感谢我的两位论文导演,在里昂的Insa和Inrs-emt的LionelRoué的Hassane Idrissi。首先是他们所有的监督,他们的经验,他们的科学知识和专业精神,这使本论文能够看到一天的光芒。莱昂内尔,感谢您的可用性和响应能力,有时在深夜纠正我的手稿或我的数字,以及您将兴趣瞄准有时令人困惑的结果的能力。Hassane,感谢您在多个领域(例如声学程序,甚至腐蚀)共享的许多知识,使您能够教过很多关于我的新手的知识。祝您在各自,专业,学术和个人项目中都取得良好的延续。除了这个沿海地区外,我还有很大的机会与其他实验室或具有相当大的翼展和影响力的团队合作。因此,我要热烈感谢Fannie Alloin和Pierre-Xavier Thivel du Lepmi de Grenoble。他们在电化学和能源存储领域的经验,尤其是他们在锂/硫的作品经历,使得不仅有可能在第一部作品和本论文的第一批作品中从右脚开始,而且还可以极大地丰富围绕获得的结果的辩论。fannie,感谢您的不取证知识(在多个领域)和持续的仁慈,以及您对任何测试的细节感和科学严格感。Pierre-Xavier,也感谢您的明智建议,您的可用性和积极性。我还要感谢里昂的INSA的埃里克市长,尽管他担任著名的Mateis实验室主任,但他的时间使他有时间陪伴我们进入同步者或分享他的巨大经验,尤其是在层析成像方面。我不知道我是否会再次有机会在等待我的专业未来,在同步器的一条轻线上工作,但无论如何,这仍然是这些论文时期最令人难忘的经历之一。也非常感谢陪伴我的人(或我陪伴我!)在这些漫长的昼夜。许多人为在那里进行的经验的实施和成功做出了贡献,尤其是技术人员和Sun和ESRF同步基因的科学家。无法全部命名,因此,我特别感谢安德鲁·金(Andrew King)在太阳曼尼斯(Sun Manips)和ESRF的Marta Majkut和Jon Wright的帮助。因此,感谢Didier Devaux,尤其是因为我允许我在深夜设置电池,感谢您再次感谢Fannie和Eric,以及Lucile,Quentin S.,最后是Victor,在Synchrotron中与之无眠的夜晚变得更加乐趣。