保留培训数据的隐私已成为一个重要的考虑因素,现在对于机器学习算法来说是一项艰巨的任务。要解决隐私问题,依从于密码学的差异隐私(DP)(Dwork等,2006)是一个强大的数学保存计划。它允许进行丰富的统计和机器学习分析,现在正成为私人数据分析的事实上的符号。保证差异隐私的方法已被广泛研究,最近在行业中采用(Tang等,2017; Ding等,2017)。作为机器学习和差异隐私社区中最重要的问题之一,在过去的十年中,DP模型中的经验风险最小化问题(即DP-erm)在(Chaudhuri等人,2011年)开始,已经在过去的十年中进行了很好的研究,例如(Bassily等,2014; Bassily等,2014; Wang et ant; Jin,2016年,Kifer等人,2017年,Wang等人,2018a,2019b;dp-dp-erm,其人口(或预期)版本,即私人的固定式凸优化(DP-SCO),近年来从(Bassily等,2014)开始受到很多关注。特定于(Bassily等,2019)首先提供了DP-SCO的最佳速率,具有(ϵ,δ)-DP的一般凸损耗函数,这与DP-MERM中最佳速率不同。后来(Feldman等,2020)通过提供一般性定位技术,将此问题扩展到强烈凸出和(或)非平滑案例。此外,如果损耗函数平滑,它们的方法具有线性时间复杂性。对于非平滑损失函数,(Kulkarni等,2021)最近提出了一种仅需要亚限级梯度复杂性的新方法。虽然已经有大量有关DP-SCO的研究,但问题仍然远远不够知名度。一个关键的观察结果是,所有以前的作品仅着眼于损失函数是一般凸或强凸的情况。但是,还有许多问题甚至比强凸功能强,或者落在凸功能和强烈凸功能之间。在非私人对应物中,各种研究试图通过对损失函数施加其他假设来获得更快的速度。并且已经表明,实现比一般凸损失函数速率快的速率确实可以(Yang等,2018; Koren and Levy,2015; van Erven等,2015),或者甚至可以达到与强凸的强劲速率相同的速率,即使函数也不强劲,karimi et al al an al al an al al and act al and act al and act an al al an al an al an al al an al al an al al al al al al al al al al al al al al al al al al al al al al al al al al a al al a al al act 201 v exe et a al and lie et as act 2010 8。 Al。,2017)。以此为动机,我们的问题是,对于具有特殊类别的人口风险功能的DP-SCO问题,是否有可能比一般凸的最佳人口和(或(或)强烈凸出案例的最佳人口风险率更快?在本文中,我们通过研究一些类别的人口风险功能来提供有效的答案。尤其是,我们将主要关注种群风险功能满足Tysbakov噪声条件(TNC)1的情况,其中包括强烈凸功能,SVM,SVM,ℓ1频繁的随机性优化和线性回归为特殊情况
本文提出了一种三相不平衡微电网三级控制优化模型。该模型考虑了 24 小时运行,包括可再生能源、储能设备和电网规范限制。使用最近开发的基于 Wirtinger 微积分的近似法简化了功率流方程。对所提出的模型进行了理论和实践评估。从理论角度来看,该模型适用于三级控制,因为它是凸的;因此,保证了全局最优、解的唯一性和内点法的收敛性。从实践角度来看,该模型足够简单,可以在小型单板计算机中实现,计算时间短。后者通过在具有 CIGRE 低压基准的 Raspberry-Pi 板上实现该模型来评估;该模型还在 IEEE 123 节点配电网络测试系统中进行了评估。
摘要 当输入点来自结构化配置(例如二维 (2D) 或三维 (3D) 网格)时,许多实际应用都要求计算凸包 (CH)。网格空间中的凸包已应用于地理信息系统、医学数据分析、机器人/自动驾驶汽车的路径规划等。用于 CH 计算的传统和现有的 GPU 加速算法不能直接在以矩阵格式表示的 2D 或 3D 网格上运行,并且不能利用这种光栅化表示中固有的顺序。这项工作引入了新颖的过滤算法,最初为 2D 网格空间开发,随后扩展到 3D 以加速外壳计算。它们进一步扩展为 GPU-CPU 混合算法,并在商用 NVIDIA GPU 上实现和评估。对于 2D 网格,对于 ( n × n ) 网格,贡献像素的数量始终限制为 ≤ 2 n。此外,它们是按字典顺序提取的,从而确保了 CH 的高效 O(n) 计算。同样,在 3D 中,对于 (n×n×n) 体素矩阵,贡献体素的数量始终限制为 ≤ 2n2。此外,2D CH 滤波在 3D 网格的所有切片上并行启用,从而进一步减少了要输入到 3D CH 计算过程的贡献体素的数量。与最先进的方法相比,我们的方法更胜一筹,尤其是对于大型和稀疏的点云。
现代机器学习中的随机优化方法通常需要仔细地调整算法参数,以大量的时间,计算和专业知识。这种现实导致人们对开发自适应(或无参数)算法的持续兴趣,这些算法需要最小或不需要调整[1、2、4-8、10-10-15、17-20]。但是,这些适应性方法通常比非自适应对应物的次级次数范围更差。存在“尽可能自适应”,还是有改进的空间?换句话说,是否有基本价格要支付(按照收敛速度),因为不知道问题参数吗?为了回答这些问题,我们从算法游戏理论中的“无政府状态价格” [16]中汲取了灵感,并介绍了“适应性价格”(POA)。大致说明,由于问题参数的不确定性,POA衡量了次优的乘法增加。我们显示了以下非平滑随机凸优化的POA下限:
从高维凸体中生成随机样品是无数连接和应用的基本算法问题。[DFK91]的著名结果的核心是用于计算凸体体积的随机多项式算法,是第一个用于均匀采样凸体的多项式时间算法。在此后的几十年中,对抽样的研究已导致其算法复杂性的一系列改进[LS90,LS93,KLS97,LV06,CV18],通常基于发现的新数学/几何结构,建立了与其他领域的连接(例如,均具有新的工具),并开发了新的工具(例如并分析马尔可夫连锁店。随着数据的扩散和机器学习的越来越重要,取样也已成为一种必不可少的算法工具,应用采样器需要非常高的尺寸的采样器,例如科学计算[CV16,HCT + 17,KLSV22] Sta20]。凸体的采样器基于马尔可夫链(有关摘要,请参见§A)。他们的分析是基于关联的马尔可夫链的电导限制,后者又界定了混合速率。分析电导需要将精致的几何参数与(Cheeger)凸体的(Cheeger)等级不平等相结合。后者的原型示例如下:对于任何可测量的分区S 1,s 2,s 3的凸形身体k r d,我们有
描述 IRS21867 是一款高压、高速功率 MOSFET 和 IGBT 驱动器,具有独立的高侧和低侧参考输出通道。专有的 HVIC 和闩锁免疫 CMOS 技术可实现坚固的单片结构。低 VCC 操作允许在电池供电应用中使用。逻辑输入与标准 CMOS 或 LSTTL 输出兼容,低至 3.3 V 逻辑。输出驱动器具有高脉冲电流缓冲级,旨在最大限度地减少驱动器交叉传导。浮动通道可用于驱动高侧配置中的 N 通道功率 MOSFET 或 IGBT,工作电压高达 600V。
晚发型或青少年特发性脊柱侧弯 (AIS) 是一种三维脊柱异常,在 10 至 16 岁儿童中发病率为 1–3%[1–4]。由于 AIS 的病因不明[5],干预措施针对的是解剖结构畸形,而不是畸形的根本原因。最近的证据表明,前庭系统可能在 AIS 的病因中发挥作用[6–9],因为它会影响下丘脑、小脑和前庭脊髓通路[10]。前庭系统由耳石器和三个正交半规管 (SCC) 组成 [11]。每个半规管都与对侧的半规管协同工作。角加速度会导致 SCC 内的毛细胞偏转,从而提供有关运动方向和强度的传入信号 [12, 13]。这些信号共同有助于平衡和姿势控制。角加速度敏感性与管道形态直接相关 [14],这表明任何结构异常都可能导致下游效应,包括平衡受损和姿势肌肉活动受损。由于 SCC 在出生时具有固定的大小和形状 [10, 15, 16],异常可能通过激活负责躯干支撑的棘旁肌在 AIS 的发病机制中起早期致病或促成作用 [3]。先前的研究发现,与正常对照组相比,AIS 患者存在前庭形态异常 [10, 17]。然而,关于 SCC 管道形态在 AIS 中的作用存在争议 [18, 19]。我们的目标是建立一种新颖的半规管成像方法,以评估鳞状细胞癌和 AIS 解剖变异之间的关联。我们测试了 AIS 患者的鳞状细胞癌几何形状的左右差异是否与对照组相比被夸大。
保留所有权利。未经许可不得重复使用。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此版本的版权所有者于 2024 年 11 月 23 日发布。;https://doi.org/10.1101/2024.11.20.24317674 doi:medRxiv 预印本
ARSENAL ® 脊柱固定系统使用说明一般信息:Arsenal 脊柱固定系统旨在帮助固定和稳定脊柱节段,作为胸椎、腰椎和/或骶椎融合的辅助手段。Arsenal 系统由各种形状和尺寸的杆、螺钉、钩、连接器和桥组成,可在骨移植愈合和/或融合块发展期间提供临时内部固定和稳定。螺钉、钩、连接器和桥由手术级钛合金 (Ti-6Al-4V ELI) 制成。杆有商用纯钛 (CP Ti Grade 4)、钛合金 (Ti-6Al-4V ELI) 和钴铬 (Co-28Cr-6Mo) 可供选择。 Arsenal 系统可与 Alphatec Spine 的 Solanas ® 后路系统配合使用,后者又可与 Avalon ® 枕骨板系统连接,以形成额外的固定层。可变桥适合与 Alphatec Spine Zodiac ® 脊柱固定系统中的 5.5 毫米杆一起使用。退行性使用指征:Arsenal 脊柱固定系统旨在用于骨骼成熟患者的后路非颈椎固定,作为以下指征的融合辅助手段:退行性椎间盘疾病(定义为由病史和放射学研究证实的椎间盘退行性引起的椎间盘源性背痛);脊椎滑脱;创伤(即骨折或脱位);椎管狭窄;弯曲(即脊柱侧凸、脊柱后凸和/或脊柱前凸);肿瘤;假关节;和/或先前融合失败。当用于儿科患者的后路非颈椎螺钉固定时,阿森纳脊柱固定系统植入物可作为融合的辅助手段来治疗青少年特发性脊柱侧弯。此外,阿森纳脊柱固定系统还用于治疗患有以下疾病的儿科患者:脊椎滑脱/脊椎裂,以及肿瘤和/或创伤引起的骨折。儿科椎弓根螺钉固定仅限于后路手术。阿森纳脊柱固定系统旨在与自体移植和/或同种异体移植一起使用。使用指征:阿森纳脊柱固定系统用于骨骼成熟患者的后路非颈椎固定,作为融合的辅助手段,用于以下适应症:退行性椎间盘疾病(定义为由病史和放射学研究证实的椎间盘退化引起的椎间盘源性背痛);脊椎滑脱;创伤(即骨折或脱位);椎管狭窄;弯曲(即脊柱侧弯、脊柱后凸和/或脊柱前凸);肿瘤;假关节;和/或先前融合失败。当用于儿科患者的后路非颈椎椎弓根螺钉固定时,Arsenal 脊柱固定系统植入物可作为融合的辅助手段,用于治疗渐进性脊柱畸形(即脊柱侧弯、脊柱后凸或脊柱前凸),包括特发性脊柱侧弯、神经肌肉性脊柱侧弯、和先天性脊柱侧弯。此外,Arsenal 脊柱固定系统旨在治疗患有以下疾病的儿科患者:脊椎滑脱/椎弓根裂、肿瘤和/或创伤引起的骨折、假关节和/或先前融合失败。儿科椎弓根螺钉固定仅限于后入路。Arsenal 脊柱固定系统旨在与自体移植和/或同种异体移植一起使用。
CD 是 是 是 是 是 是 是 NCD 否 +/- +/- +/- +/- +/- WR 否 +/- +/- +/- +/- +/- +/- WNR 否 +/- +/- +/- +/- +/- +/- LBFS N/A 否 否 否 否 否 否 否 例外 无 LIMDU/PEB 如果已经举行了 LIMDU/PEB,则在董事会召开时应提交 Grounding PE 和 AMS。此委员会的结果必须包含在豁免包中。成员没有资格获得豁免,直到董事会将其送回全职值班。关键是 是:1) 胸椎或腰椎侧弯超过 20 度;2) 胸椎后凸超过 40 度; 3) 腰椎前凸 > 50 度(申请人)和 > 55 度(指定人员) (所有测量均以 Cobb 角表示) +/- 取决于是否满足所列要求,可能会或可能不会建议豁免(“逐案”处理)航空医学问题:过度的脊柱后凸、脊柱侧凸、脊柱前凸或它们的组合可能会使椎间盘在弹射过程中承受过度的 Gz+ 负荷。在 Griffin 的经典评论中,发现弹射座椅操作期间脊柱骨折的发生率与弹射时的姿势有关。当飞行员轻微屈曲以启动摇杆激活机制时,脊柱骨折发生的频率更高,但当他们使用允许诱导脊柱伸展的面部窗帘系统时,脊柱骨折发生的频率较低 [1]。因此,可以合理地假设,预先存在的脊柱畸形同样会使飞行员面临更大的风险。症状可能导致长时间在狭窄的驾驶舱内受到限制以及受到振动或过大 G 力时出现背痛。超过 30 度的异常脊柱弯曲会造成弹射伤害的风险。上半身的重心位于脊柱前方。每当沿脊柱轴施加负荷时,例如在弹射时,就会产生弯曲运动,这会增加压缩性骨折的可能性。虽然指定机组人员可以豁免,但考虑为申请人豁免意义不大,因为初始训练将涉及弹射座椅飞机。脊柱侧弯不超过 30 度的长期结果非常有利,但超过 30 度的长期结果不确定。请注意,Cobb 方法测量结果存在 3-5 度的误差。豁免:如果胸椎或腰椎侧弯(Cobb 方法测量结果)超过 20 度,则申请人将失去资格,且不予豁免,但根据指定人员的具体情况,最多可豁免 30 度。胸椎后凸超过 40 度属于 CD,但可以