与项目“新心”的项目与州首都杜塞尔多夫(LHD)合作的开发商实现了在中心地点开发身份 - 创造高级合奏的目标。新的心脏将被定位为杜塞尔多夫市中心以北的新心脏,并充当城市规划和建筑地标,并在城市以外的范围内充满光芒。Hans-Böckler-Straße39的位置提供了相当大的实施潜力作为高层框架计划的一部分,并且由于其位于Kennedyydamm Urban节点的城市中心的位置,连接和可见性。主题应该是城市模块的开发为“城市枢纽”,其用途广泛,旨在满足现场工作,生活和生活条件的未来信息,但也适合每个人作为外部组织外城市模块。在“街区的新心”中,要为在附近生活和工作的人们提供身份证明的地方。具有高质量,灵活的办公空间,令人兴奋的生活环境以及多功能(可能多拍的基础,该建筑群应该对每个人都有吸引力。由此产生的任务在于从肯尼迪姆(Kennedydamm)的背景下发展紧张和可以理解的城市衍生作品,以及对对面的天空办公室的和谐。从70 m到90 m到“杜塞尔多夫传统地平线”的分级高度开发。必须检查100 m。是一个边际和底座发展的合奏,其中包括根据该地区现有和计划的高层家族发展的一个或多个高点。取决于边缘和基座建筑物的详细说明,是地上的基本区域。检查55,000平方米。的目标是建立一个前瞻性且永久灵活的合奏,这为工作,生活和生活创造了空间,以创新性和同时的经济形式,并为可持续建筑的自觉目标提供了当代答案。在各自的创建时间中寻求最好的可持续性认证。
CONCRETE BLOCK (CB) Production and Construction Guide ISBN : 978-81-87395-78-2 (4) Published by : Development Alternatives B-32, Tara Crescent, Qutub Institutional Area New Delhi 110016, India Tel: +91-11-2654-4100, 2654-4200 Fax: +91-11-2685-1158 Email: mail@devalt.org, Website: www.devalt.org Cover Photo Credit : Development Alternatives Author(s) : Zeenat Niazi, Pankaj Khanna, Suhani Gupta, Rashi Sirohi Layout : Binu K George Disclaimer This document is an outcome of a project titled, “Delivery of Eco-Friendly Multi-Hazard Resistant Construction Technologies and Habitat Solutions in Mountain States,重点:北阿坎德邦(Uttarakhand)由“科学技术部(DST),新德里(DST)”资助,用于我们社会的经济发展,社会赋权和环境管理。本文件旨在由政策制定者,学术界,政府,非政府组织和公众使用,以供有关利益事项的指导。使用本文档中包含的信息的决定和责任仅在于读者。作者和发布者因使用或应用本文档而对任何后果不承担任何责任。内容可以使用/引用,并有适当确认开发替代方案的确认。
摘要 - 我们的研究在多代理网络中分发了大数据非convex优化。我们考虑平滑(可能)非凸功能的总和的(受约束的)最小化,即代理的总和,以及凸(可能)的凸(可能)非平滑正常器。我们的兴趣是大数据问题,其中有大量变量需要优化。如果通过标准分布式优化算法进行处理,则这些大规模问题可能会因为每个节点的局部计算和通信负担过高,因此可能会棘手。我们提出了一种新颖的分布式解决方案方法,在每种迭代中,代理以不协调的方式更新整个决策向量的一个块。为了处理成本函数的非概念性,新型方案取决于连续的凸近似(SCA)技术,结合了一种新颖的块驱动的推动力共识方案,该方案对执行局部扩展的块状操作和梯度平均跟踪非常有用。建立了渐近收敛到非凸问题的固定溶液。最后,数值结果显示了提出的算法的有效性,并突出了块维度如何影响通信开销和实际收敛速度。
贡献。在本文中,我们系统地研究了近似凸函数优化的量子算法,并将其应用于零阶随机凸老虎机。量子计算是一项快速发展的技术,量子计算机的能力正在急剧提升,最近谷歌 [ 6 ] 和中国科学技术大学 [ 42 ] 已经达到了“量子至上”。在优化理论中,半定规划 [ 3 , 4 , 11 , 12 ]、一般凸优化 [ 5 , 15 ]、优化中的脱离鞍点问题 [ 41 ] 等问题的量子优势已被证明。然而,据我们所知,近似凸优化和随机凸优化的量子算法是广泛开放的。在本文中,我们使用量子零阶评估预言机 OF 来考虑这些问题,这是先前量子计算文献中使用的标准模型 [ 5 , 14 , 15 , 41 ]:
摘要 — 这项工作提出了一种新方法,将微/纳米级多孔铜反蛋白石 (CIO) 融入 Sn 基焊料微凸块中,与低温 CMOS 后端 (BEOL) 工艺兼容。微孔结构可使临界孔径小至 5 μm 甚至小至 200 nm(基于凸块尺寸)。这种多孔辅助键合技术具有巨大潜力,可提高细间距 Cu/Sn 键合界面的热导率和机械可靠性。在这项工作中,我们已成功制造并展示了直径为 100 μm 的 Cu 凸块上孔径为 3 μm 的基于 CIO 的微孔结构,实现了 3 μm - 5 μm 的目标厚度,这通过聚焦离子束显微镜 (FIB) 分析得到证实。Cu-CIO 和 Sn 焊料键合界面的微观结构和元素映射表明,熔融焊料可以渗透这些铜 CIO 微孔结构。这样,微凸块就可以通过毛细力进行自对准,形成坚固的机械相互扩散键。此外,采用简化的有限元法 (FEM) 表明,基于 CIO 的微/纳米多孔铜基质结构有可能将 Cu/Sn 键合层的等效热导率提高 2-3 倍。