(k)“有关排除黑社会团体的事项”的承诺书中有虚假记载或发生违反承诺的情况时。 (4)合同的准备 中标人被选定为中标人后,应立即准备合同。 (适用的合同条款为驻军标准合同“服务合同条款”、“关于撞机等违法行为的特别条款”和“关于排除有组织犯罪集团的特别条款”) (5)中标确定方法 总金额在单位确定的报价限额内的投标人为中标人。如果有两个或两个以上的最低出价者有资格中标,则将通过抽签来确定中标者。 在确定中标人时,中标金额为投标文件所载金额加上10%(如果该金额的小数部分不足1日元,则小数部分四舍五入)。因此,无论投标人是消费税的应税商业实体还是免税商业实体,投标人都必须在投标文件中载明相当于估算金额的110/100的金额。 (6)其他 A.双方当事人签字、盖章后,本合同即成立。 (一)投标人参加投标时须提交资格审查结果通知书复印件。 如果您代表其他人竞标,则必须提交授权委托书。 E. 允许通过邮寄方式投标。此时,请将信封折叠两层,内信封上写明“内附北千岁(R6)长门宿舍消防设备检查服务投标书”,另附资格审查结果通知书复印件,并于投标当日上午9点前,通过挂号信或其他方式(有送达记录)寄送至北千岁警备队第323会计组。此时请您致电负责人确认到达情况。 将立即进行重新招标。然而,如果已经通过邮寄方式投标,则重新投标将另行规定。 请在投标表格下方空白处写明:“本公司(若为本人或个人)或本团体(若为团体)接受《投标及合同指南》及《标准合同等》中的合同条款,参与投标。”此外,我们承诺遵守《招标及承包指南》中关于排除黑社会组织参与的条款。 “承诺并声明这一点。 如果您希望当天参加此次投标,则必须在投标日前一天下午 5 点之前联系北千岁驻地第 323 会计部队。 招标相关事宜请咨询:日本陆上自卫队北千岁警备队第 323 计画中队承包课(联系人:源田) 电话:0123-23-2106(内线 5341) 规格相关事宜请咨询:日本陆上自卫队北千岁警备队作战部队管理课(联系人:藤村) 电话:0123-23-2106(内线 5973) (7)公告发布地点及期限: 发布地点:北方陆军网站:http://www.mod.go.jp/gsdf/nae/fin/index.html 发布期限:2024 年 5 月 20 日(星期一)至 2024 年 5 月 31 日(星期五)
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
保留培训数据的隐私已成为一个重要的考虑因素,现在对于机器学习算法来说是一项艰巨的任务。要解决隐私问题,依从于密码学的差异隐私(DP)(Dwork等,2006)是一个强大的数学保存计划。它允许进行丰富的统计和机器学习分析,现在正成为私人数据分析的事实上的符号。保证差异隐私的方法已被广泛研究,最近在行业中采用(Tang等,2017; Ding等,2017)。作为机器学习和差异隐私社区中最重要的问题之一,在过去的十年中,DP模型中的经验风险最小化问题(即DP-erm)在(Chaudhuri等人,2011年)开始,已经在过去的十年中进行了很好的研究,例如(Bassily等,2014; Bassily等,2014; Wang et ant; Jin,2016年,Kifer等人,2017年,Wang等人,2018a,2019b;dp-dp-erm,其人口(或预期)版本,即私人的固定式凸优化(DP-SCO),近年来从(Bassily等,2014)开始受到很多关注。特定于(Bassily等,2019)首先提供了DP-SCO的最佳速率,具有(ϵ,δ)-DP的一般凸损耗函数,这与DP-MERM中最佳速率不同。后来(Feldman等,2020)通过提供一般性定位技术,将此问题扩展到强烈凸出和(或)非平滑案例。此外,如果损耗函数平滑,它们的方法具有线性时间复杂性。对于非平滑损失函数,(Kulkarni等,2021)最近提出了一种仅需要亚限级梯度复杂性的新方法。虽然已经有大量有关DP-SCO的研究,但问题仍然远远不够知名度。一个关键的观察结果是,所有以前的作品仅着眼于损失函数是一般凸或强凸的情况。但是,还有许多问题甚至比强凸功能强,或者落在凸功能和强烈凸功能之间。在非私人对应物中,各种研究试图通过对损失函数施加其他假设来获得更快的速度。并且已经表明,实现比一般凸损失函数速率快的速率确实可以(Yang等,2018; Koren and Levy,2015; van Erven等,2015),或者甚至可以达到与强凸的强劲速率相同的速率,即使函数也不强劲,karimi et al al an al al an al al and act al and act al and act an al al an al an al an al al an al al an al al al al al al al al al al al al al al al al al al al al al al al al al al a al al a al al act 201 v exe et a al and lie et as act 2010 8。 Al。,2017)。以此为动机,我们的问题是,对于具有特殊类别的人口风险功能的DP-SCO问题,是否有可能比一般凸的最佳人口和(或(或)强烈凸出案例的最佳人口风险率更快?在本文中,我们通过研究一些类别的人口风险功能来提供有效的答案。尤其是,我们将主要关注种群风险功能满足Tysbakov噪声条件(TNC)1的情况,其中包括强烈凸功能,SVM,SVM,ℓ1频繁的随机性优化和线性回归为特殊情况
本文提出了一种三相不平衡微电网三级控制优化模型。该模型考虑了 24 小时运行,包括可再生能源、储能设备和电网规范限制。使用最近开发的基于 Wirtinger 微积分的近似法简化了功率流方程。对所提出的模型进行了理论和实践评估。从理论角度来看,该模型适用于三级控制,因为它是凸的;因此,保证了全局最优、解的唯一性和内点法的收敛性。从实践角度来看,该模型足够简单,可以在小型单板计算机中实现,计算时间短。后者通过在具有 CIGRE 低压基准的 Raspberry-Pi 板上实现该模型来评估;该模型还在 IEEE 123 节点配电网络测试系统中进行了评估。
摘要 当输入点来自结构化配置(例如二维 (2D) 或三维 (3D) 网格)时,许多实际应用都要求计算凸包 (CH)。网格空间中的凸包已应用于地理信息系统、医学数据分析、机器人/自动驾驶汽车的路径规划等。用于 CH 计算的传统和现有的 GPU 加速算法不能直接在以矩阵格式表示的 2D 或 3D 网格上运行,并且不能利用这种光栅化表示中固有的顺序。这项工作引入了新颖的过滤算法,最初为 2D 网格空间开发,随后扩展到 3D 以加速外壳计算。它们进一步扩展为 GPU-CPU 混合算法,并在商用 NVIDIA GPU 上实现和评估。对于 2D 网格,对于 ( n × n ) 网格,贡献像素的数量始终限制为 ≤ 2 n。此外,它们是按字典顺序提取的,从而确保了 CH 的高效 O(n) 计算。同样,在 3D 中,对于 (n×n×n) 体素矩阵,贡献体素的数量始终限制为 ≤ 2n2。此外,2D CH 滤波在 3D 网格的所有切片上并行启用,从而进一步减少了要输入到 3D CH 计算过程的贡献体素的数量。与最先进的方法相比,我们的方法更胜一筹,尤其是对于大型和稀疏的点云。
现代机器学习中的随机优化方法通常需要仔细地调整算法参数,以大量的时间,计算和专业知识。这种现实导致人们对开发自适应(或无参数)算法的持续兴趣,这些算法需要最小或不需要调整[1、2、4-8、10-10-15、17-20]。但是,这些适应性方法通常比非自适应对应物的次级次数范围更差。存在“尽可能自适应”,还是有改进的空间?换句话说,是否有基本价格要支付(按照收敛速度),因为不知道问题参数吗?为了回答这些问题,我们从算法游戏理论中的“无政府状态价格” [16]中汲取了灵感,并介绍了“适应性价格”(POA)。大致说明,由于问题参数的不确定性,POA衡量了次优的乘法增加。我们显示了以下非平滑随机凸优化的POA下限:
从高维凸体中生成随机样品是无数连接和应用的基本算法问题。[DFK91]的著名结果的核心是用于计算凸体体积的随机多项式算法,是第一个用于均匀采样凸体的多项式时间算法。在此后的几十年中,对抽样的研究已导致其算法复杂性的一系列改进[LS90,LS93,KLS97,LV06,CV18],通常基于发现的新数学/几何结构,建立了与其他领域的连接(例如,均具有新的工具),并开发了新的工具(例如并分析马尔可夫连锁店。随着数据的扩散和机器学习的越来越重要,取样也已成为一种必不可少的算法工具,应用采样器需要非常高的尺寸的采样器,例如科学计算[CV16,HCT + 17,KLSV22] Sta20]。凸体的采样器基于马尔可夫链(有关摘要,请参见§A)。他们的分析是基于关联的马尔可夫链的电导限制,后者又界定了混合速率。分析电导需要将精致的几何参数与(Cheeger)凸体的(Cheeger)等级不平等相结合。后者的原型示例如下:对于任何可测量的分区S 1,s 2,s 3的凸形身体k r d,我们有
采用三维热电分析模拟了共晶SnAg焊料凸点在收缩凸点尺寸时的电流密度和温度分布。研究发现,对于较小的焊点,焊料中的电流拥挤效应显著降低。减少焊料时,热点温度和热梯度增大。由于焦耳热效应,凸点高度为144.7 lm的焊点最高温度为103.15℃,仅比基板温度高3.15℃。然而,当凸点高度降低到28.9 lm时,焊料中的最高温度升高到181.26℃。焊点收缩时会出现严重的焦耳热效应。较小焊点中焦耳热效应较强可能归因于两个原因,首先是Al走线的电阻增加,它是主要的热源。其次,较小凸块中的平均电流密度和局部电流密度增加,导致较小焊料凸块的温度升高。2009 年由 Elsevier Ltd. 出版。