氨基糖苷通常用于治疗威胁生命的细菌感染,但是,通过长期的临床治疗,氨基糖苷可能会导致不可逆的听力损失。尽管广泛探讨了大量研究,但氨基糖苷的耳毒性的机制和预防仍受到限制。特别是,程序性细胞死亡(PCD)的进步提供了更多的新观点。本综述总结了程序性细胞死亡中的一般信号途径,包括细胞凋亡,自噬和铁凋亡,以及氨基糖苷诱导的耳毒性的机制。此外,还研究了新的干预措施,尤其是基因治疗策略,以预防或治疗前瞻性临床应用,以预防或治疗氨基糖苷诱导的听力损失。
没有人类驾驶员的干预,并与其他车辆和/或基础设施以及其他设备2进行通信2。美国运输部总结了将CAV技术引入运输系统3:道路安全,经济和社会福利,能源效率和公共流动性的四个主要潜在好处。CAV技术为驾驶员/车辆和交通基础设施创造了一个新的环境,以在现实世界中进行交互。在这种环境中,连接起着至关重要的作用,无线通信使车辆能够相互通信(V2V)以及基础架构(V2I)(v2i)关于实时车辆位置,速度,加速度和其他数据。这些实时数据的可用性为CAVS提供了协调交通相互作用的机会,以使交通相互作用,以最大程度地提高燃油效率并减少碰撞4。猜测对自动运输系统进行了实质性转变,已经进行了许多研究,以调查涉及CAV应用程序的挑战和机会5,6,7,8。例如,橡树岭国家实验室9正在开发用于CAVS应用程序的实时移动控制系统(RTMC),其中包括流量数据管理,路线计划,集中式通信和可视化。已经证明,可以使用交通信号阶段和计时(SPAT)信息来提高车辆燃油效率以协调车辆操作10。还已经确定,可以通过解决相关的最佳控制问题4来确定车辆的最佳速度方案。然而,尽管许多研究人员已经证明了使用SPAT信息来优化燃油经济性的潜力,但大多数努力都集中在提高单个车辆的性能并发出信号计时控制11,12。此外,相关作品主要集中于为CAV生成可行的轨迹,同时忽略了以计算效率和保证收敛性来实时执行生成的轨迹。骑士的运动控制系统是安全至关重要的,并严重依赖于车载算法。需要对操作的实时更新,以应对周围环境的动态。尽管已经提出了许多方法来获得轨迹的轨迹,但由于高计算成本,无法保证最佳解决方案,并且无法应付非凸运动限制和动态环境,因此它们的优化方法不适合现实世界实施。13,14。本文将通过开发一种基于凸优化的新型方法来满足这种需求,该方法使用SPAT信息产生速度曲线。具有多项式解决方案时间和全球最佳收敛的优点,凸优化方法对于车载应用非常有前途。这项研究的贡献是三倍。首先,提出的顺序凸编程(SCP)算法解决了非线性和非凸的最佳速度控制问题,并确保收敛性和多项式解决方案时间在解决每个步骤中解决凸的问题时。本文的其余部分如下:第2节对相关工作进行了简要审查。第二,我们利用伪搭配方法与线路搜索和信任区域技术结合使用,从根本上改善了提出的SCP算法,以提高准确性,更好的实时和融合性能。第三,得益于高级计算效率,该提出的方法实现了实时模型预测控制(MPC)框架,并对动态交通环境的即时响应,以避免碰撞和车辆协调。第3节描述了本研究中考虑的系统动力学和最佳控制问题。第4节介绍了一种新方法,该方法确定了在信号走廊中行驶的骑士的最佳车辆速度轮廓。第5节通过模拟结果和比较证明了拟议方法的性能和有效性。第6节总结了本文的工作。
图 8 和图 9 分别显示了凸耳连接支架孔处的应力值和位移轮廓。在连接孔截面的中点处观察到最大应力 968N/mm 2。钢合金、热处理 AISI-4340 的极限强度为 1835 N/mm 2。此处最大应力小于结构的极限强度;因此我们可以说结构对于施加的载荷是安全的。
关键的飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用疲劳寿命评估和裂纹扩展预测来监测其关键部件的结构完整性。使用了各种方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。选择水平稳定器凸耳是因为它具有最高的疲劳失效可能性。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 Nastran 来模拟裂纹扩展。使用数值结果验证了裂纹扩展分析的结果。结论是,基于疲劳寿命循环,结构状态不会受到严重损伤,其失效大约在100万次循环左右,而耳片底部裂纹扩展位置是关键位置。研究成果将以延长耳片的结构寿命为目标。
niharika sharma(维也纳大学博士后,自2024年))Zeynep Kurt(自2024年以来,维也纳大学)Manuela Felsberger(自2024年以来)Manuela Felsberger(自2024年以来)载于维也纳,2023年,星期六)BenceMolnár(MSC学生,维也纳大学,2022年)Kiera Sullivan(BSC学生,加利福尼亚大学圣巴巴拉大学,2020/21)Meriel J. Bittner(2020/21))维也纳,2016年)Martina Stockinger(BSC学生,维也纳大学,2016年)。
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
保留培训数据的隐私已成为一个重要的考虑因素,现在对于机器学习算法来说是一项艰巨的任务。要解决隐私问题,依从于密码学的差异隐私(DP)(Dwork等,2006)是一个强大的数学保存计划。它允许进行丰富的统计和机器学习分析,现在正成为私人数据分析的事实上的符号。保证差异隐私的方法已被广泛研究,最近在行业中采用(Tang等,2017; Ding等,2017)。作为机器学习和差异隐私社区中最重要的问题之一,在过去的十年中,DP模型中的经验风险最小化问题(即DP-erm)在(Chaudhuri等人,2011年)开始,已经在过去的十年中进行了很好的研究,例如(Bassily等,2014; Bassily等,2014; Wang et ant; Jin,2016年,Kifer等人,2017年,Wang等人,2018a,2019b;dp-dp-erm,其人口(或预期)版本,即私人的固定式凸优化(DP-SCO),近年来从(Bassily等,2014)开始受到很多关注。特定于(Bassily等,2019)首先提供了DP-SCO的最佳速率,具有(ϵ,δ)-DP的一般凸损耗函数,这与DP-MERM中最佳速率不同。后来(Feldman等,2020)通过提供一般性定位技术,将此问题扩展到强烈凸出和(或)非平滑案例。此外,如果损耗函数平滑,它们的方法具有线性时间复杂性。对于非平滑损失函数,(Kulkarni等,2021)最近提出了一种仅需要亚限级梯度复杂性的新方法。虽然已经有大量有关DP-SCO的研究,但问题仍然远远不够知名度。一个关键的观察结果是,所有以前的作品仅着眼于损失函数是一般凸或强凸的情况。但是,还有许多问题甚至比强凸功能强,或者落在凸功能和强烈凸功能之间。在非私人对应物中,各种研究试图通过对损失函数施加其他假设来获得更快的速度。并且已经表明,实现比一般凸损失函数速率快的速率确实可以(Yang等,2018; Koren and Levy,2015; van Erven等,2015),或者甚至可以达到与强凸的强劲速率相同的速率,即使函数也不强劲,karimi et al al an al al an al al and act al and act al and act an al al an al an al an al al an al al an al al al al al al al al al al al al al al al al al al al al al al al al al al a al al a al al act 201 v exe et a al and lie et as act 2010 8。 Al。,2017)。以此为动机,我们的问题是,对于具有特殊类别的人口风险功能的DP-SCO问题,是否有可能比一般凸的最佳人口和(或(或)强烈凸出案例的最佳人口风险率更快?在本文中,我们通过研究一些类别的人口风险功能来提供有效的答案。尤其是,我们将主要关注种群风险功能满足Tysbakov噪声条件(TNC)1的情况,其中包括强烈凸功能,SVM,SVM,ℓ1频繁的随机性优化和线性回归为特殊情况
本文提出了一种三相不平衡微电网三级控制优化模型。该模型考虑了 24 小时运行,包括可再生能源、储能设备和电网规范限制。使用最近开发的基于 Wirtinger 微积分的近似法简化了功率流方程。对所提出的模型进行了理论和实践评估。从理论角度来看,该模型适用于三级控制,因为它是凸的;因此,保证了全局最优、解的唯一性和内点法的收敛性。从实践角度来看,该模型足够简单,可以在小型单板计算机中实现,计算时间短。后者通过在具有 CIGRE 低压基准的 Raspberry-Pi 板上实现该模型来评估;该模型还在 IEEE 123 节点配电网络测试系统中进行了评估。