我们在用户级别的隐私下研究了差异化私有随机凸优化(DP-SCO),每个用户可以持有多个数据项。用户级DP-SCO的现有工作要么需要超多项式运行时[Ghazi等,2023b],要么要求用户数量在问题的维度上以额外的严格影响[Bassily and Sun,Sun,2023]在问题的维度上生长。我们为用户级DP-SCO开发了新的算法,这些算法在多项式时间内获得了凸面和强烈凸功能的最佳速率,并要求用户数量仅在维度上对数增长。我们的算法是第一个在多项式时间内获得非平滑函数的最佳速率。这些算法基于多通道DP-SGD,与集中数据的新型私人平均估计程序合并,该过程在估算梯度的平均值之前对较高的删除步骤进行了分类。
2.2.2北卡罗来纳州西部 - 北卡罗来纳州生态服务现场办公室地区,北卡罗来纳州ESFO审查了现有的NLEB数据(正面和负面),NLEB的生活历史和北卡罗来纳州西部的家居范围,以精炼并为北卡罗来纳州西部的NLEB焦点区域创建了NLEB焦点区域。 ESFO生物学家得出的结论是,Nleb只有在北卡罗来纳州的III级蓝岭生态区才存在(Wilken等人。 2011,p。 70)。 为了创建Dkey使用的多边形,他们将蓝岭生态区的多边形缓冲五英里,并施加了凹面船体(XTools Pro),其细节级别设置为40在缓冲的蓝色山脊生态区。 后一个步骤是为了连接单独的蓝脊环境多边形,并在北卡罗来纳州创建一个连续的多边形。2.2.2北卡罗来纳州西部 - 北卡罗来纳州生态服务现场办公室地区,北卡罗来纳州ESFO审查了现有的NLEB数据(正面和负面),NLEB的生活历史和北卡罗来纳州西部的家居范围,以精炼并为北卡罗来纳州西部的NLEB焦点区域创建了NLEB焦点区域。ESFO生物学家得出的结论是,Nleb只有在北卡罗来纳州的III级蓝岭生态区才存在(Wilken等人。2011,p。 70)。为了创建Dkey使用的多边形,他们将蓝岭生态区的多边形缓冲五英里,并施加了凹面船体(XTools Pro),其细节级别设置为40在缓冲的蓝色山脊生态区。后一个步骤是为了连接单独的蓝脊环境多边形,并在北卡罗来纳州创建一个连续的多边形。
摘要 — 完全在耳内的脑电图 (入耳式 EEG) 为不引人注目的连续生理和认知状态监测开辟了令人兴奋的途径。这项工作提出了基于在警觉任务实验中使用的舒适的双耳入耳式 EEG 仪器记录的数据对注意力状态进行精确分类的技术。我们记录了来自多个受试者的头皮和耳内 EEG 信号,并表明入耳式 EEG 提供了相当的分类准确度。我们的工作是共模空间滤波技术首次应用于从不受束缚的受试者的稀疏电极获取的信号。我们在对注意力和静息状态进行分类时展示了 90-95% 的准确率(带有 30 个电极的头皮 EEG)和 70-75%(耳道和耳甲内有 5 个电极的入耳式 EEG)。我们还展示了我们的方法对于低功耗片上分类来说是轻量级的,具有少量学习的能力。可穿戴、连续健康传感器的必要性在于适应资源受限的应用,并适应受试者之间的差异和不同的环境条件。这项研究表明,未来系统级芯片 (SoC) 集成对于能够进行闭环认知状态监测和神经反馈的用户通用和便携式设备具有可行性。索引术语 —BCI、入耳式脑电图、认知状态监测、警觉任务
摘要:耳胶囊和周围的颞骨表现出复杂的3D运动,受骨传导刺激的频率和位置影响。所得的与当经压力的相关性尚未足够理解,因此在实验和数值上都是这项研究的重点。实验是在三个尸体头的六个颞骨上进行的,在0.1-20 kHz的乳突和经典的巴哈位置上应用了bc助听器刺激。在包括海角和stapes在内的各个颅骨区域上测量了三维运动。使用自定义的声学接收器测量了2粒内压力。该实验是基于Liuhead的自定义有限元模型(FEM)的数字重新创建的,并增加了听觉外围。在4、8和20 GPA之间变化了FEM内皮质骨结构域的模量。 在大多数频率上与实验数据排列的预测差分后压力,并表明头骨变形,尤其是在耳囊中,取决于颅底材料的性能。 实验结果和FEM结果表明,耳胶囊表现为刚性加速度计,在耳蜗上施加惯性载荷,甚至在7 kHz以上。 未来的工作应探讨耳囊和耳蜗含量之间的固体流体相互作用。 v C 2025作者。 所有文章内容(除非另有说明,否则都将根据Creative Commons归因(cc by)许可(https://creativecommons.org/licenses/4.0/)获得许可。在4、8和20 GPA之间变化了FEM内皮质骨结构域的模量。在大多数频率上与实验数据排列的预测差分后压力,并表明头骨变形,尤其是在耳囊中,取决于颅底材料的性能。实验结果和FEM结果表明,耳胶囊表现为刚性加速度计,在耳蜗上施加惯性载荷,甚至在7 kHz以上。未来的工作应探讨耳囊和耳蜗含量之间的固体流体相互作用。v C 2025作者。所有文章内容(除非另有说明,否则都将根据Creative Commons归因(cc by)许可(https://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1121/10.0034859(2024年8月28日收到; 2024年12月19日修订; 2024年12月20日接受; 2025年1月28日在线发布)[编辑:Julien Meaud]
1新加坡国立大学量子技术中心,新加坡3科学驱动器2,新加坡117543 2量子量子信息和计算机科学和量子学院联合中心,NIST/马里兰州,马里兰州,马里兰州大学公园,20742,美国20742,美国3美国高性能计算研究所(IHPC)16-16 Connexis, Singapore 138632, Republic of Singapore 4 MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, Singapore UMI 3654, Singapore 5 National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore 6 School of Electrical and Electronic Engineering Block S2.1, 50 Nanyang Avenue, Singapore 639798,新加坡7物理学系印度理工学院 - 孟买,孟买,孟买400076,印度8量子信息卓越中心,计算,科学和技术卓越中心,印度孟买孟买,孟买,印度400076
本文研究了网络化多智能体系统中的学习增强分散式在线凸优化,这是一个尚未得到充分探索的具有挑战性的场景。我们首先考虑一种线性学习增强分散式在线算法(LADO-Lin),该算法以线性方式将机器学习(ML)策略与基线专家策略相结合。我们表明,虽然 LADO-Lin 可以利用 ML 预测的潜力来提高平均成本性能,但它不能保证最坏情况的性能。为了解决这个限制,我们提出了一种新颖的在线算法(LADO),该算法自适应地结合 ML 策略和专家策略来保护 ML 预测,从而实现强大的竞争力保证。我们还证明了 LADO 的平均成本界限,揭示了平均性能和最坏情况鲁棒性之间的权衡,并展示了通过明确考虑鲁棒性要求来训练 ML 策略的优势。最后,我们对分散式电池管理进行了实验。我们的结果突出了 ML 增强在提高 LADO 的平均性能以及保证的最坏情况性能方面的潜力。
自然表达为对所有测量值的实现线性函数的优化,并具有固定数量的结果。在量子克隆[BDE + 98,SIGA05]和量子货币的密切相关概念[AFG + 12]的研究中出现了其他例子,其中人们普遍有兴趣知道,最佳选择的量子通道可以如何将一个给定状态的单个副本转换为相同状态的多个副本,以相对于多个差异图的多个差异。可以在量子复杂性理论中找到另一个示例,其中两种量子量子交互式证明系统[JUW09]自然分析为优化问题,在该问题中,目标函数描述了给定的验证者接受的概率,并且在所有量子通道中,优化的范围都在所有尺寸的量子通道中描述了可能的操作范围。关于在所有测量值中定义的线性函数的优化,并通过HOLVO [HOL73B,HOL73A]和YUEN,KENNEDY,KENNEDY和LAX [YKL70,YKL70,YKL75,YKL75,YKL70,YKL70,YKL75]确定了固定数量的结果,以实现最佳状态的必要条件。这些条件在本文稍后在本文稍后明确描述,相对容易检查;实际上,通过使用半有限编程[JVF02,IP03,EMV03],可以实际发现或近似最佳测量的问题,而有效解决的问题通常是一项更具计算机的任务。这些最佳条件可以很容易地扩展,以获得在所有量子通道的集合中定义的实现线性函数的最佳条件,从而将一个量子系统转换为另一个量子系统。我们证明了这些结果的概括,即凸出功能不一定是线性的凸出优化问题。更准确地说,我们考虑了形式的优化问题最小化f(φ)受φ∈C(x,y),(1),(1)
∗ 斯坦福大学和拍卖学。电子邮件:milgrom@stanford.edu † 斯坦福大学和拍卖学。电子邮件:mwatt@stanford.edu。感谢 Mohammad Akbarpour、Martin Bichler、Robert Day、Ravi Jagadeesan、Fuhito Kojima、Shoshana Vasserman 以及斯坦福大学、苏黎世大学、NBER 市场设计工作组、西蒙斯劳弗数学科学研究所和第 32 届石溪国际博弈论会议的研讨会参与者,以及对本项目提出的有益意见和建议的审稿人。本文的扩展摘要发表在第 23 届 ACM 经济与计算会议 (EC'22) 的论文集上,2022 年 7 月 11 日至 15 日,美国科罗拉多州博尔德,题为“无凸性市场的线性定价机制”。本文的早期草稿以“非凸经济的瓦尔拉斯机制和约束形式第一福利定理”为题发表。米尔格罗姆感谢美国国家科学基金会 (拨款编号 SES-1947514) 的支持。瓦特感谢斯坦福大学 Koret 奖学金、Ric Weiland 研究生奖学金和 Gale and Steve Kohlhagen 经济学奖学金的支持。