肿瘤出芽被认为是癌细胞活动的标志,是肿瘤转移的第一步。本研究旨在通过对直肠癌出芽病理图像训练基于区域的Faster R-CNN,建立直肠癌出芽病理自动诊断平台。选取青岛大学附属医院2015年1月至2017年1月236例直肠癌患者术后病理切片图像进行分析,使用Label图像软件标记肿瘤部位,利用Faster R-CNN对学习集图像进行训练,建立肿瘤出芽病理分析自动诊断平台。使用测试集图像验证学习结果。通过受试者工作特征(ROC)曲线对诊断平台进行评估。通过对肿瘤出芽病理图像进行训练,初步建立了直肠癌出芽病理自动诊断平台。对训练集中结节类别的准确率和召回率绘制准确率-召回率曲线,曲线下面积=0.7414,说明Faster R-CNN的训练是有效的;在验证集中验证ROC曲线下面积为0.88,说明建立的人工智能平台在肿瘤出芽病理诊断中表现良好。建立的用于直肠癌肿瘤出芽病理诊断的Faster R-CNN深度神经网络平台可以帮助病理医生做出更高效、准确的病理诊断。
摘要 我们最近认识到植物中多种 RNA 类经历动态共价化学修饰(或表观转录组标记),这为基因表达调控的潜在分子机制提供了新的见解。相比之下,由 DNA 和组蛋白的可遗传修饰组成的表观遗传标记已在植物中得到广泛研究,它们对植物基因表达的影响已得到充分证实。基于我们对植物表观转录组和表观基因组的不断增长的了解,探索这两个调控层如何相互融合以复杂地确定关键生物过程(例如发育和对压力的反应)背后的基因表达水平是合乎逻辑的。在此,我们重点关注植物表观转录组与涉及 DNA 修饰、组蛋白修饰和非编码 RNA 的表观遗传调控之间串扰的新证据。
微流控装置与荧光显微镜相结合,提供了高分辨率和高内涵的平台,用于研究芽殖酵母酿酒酵母的单细胞形态、行为和复制衰老的动态过程。然而,大量记录的图像使得数据处理工作非常耗费人力和时间,而酵母复制寿命 (RLS) 是酵母衰老的主要标准。为了解决这一限制并进行无标记的 RLS 分析,引入了可通过微流控装置中的微电极轻松功能化的电阻抗谱 (EIS) 来监测芽殖酵母的细胞生长和分裂。在此,提出了一种集成 EIS 生物传感器的微流控装置,以单细胞分辨率进行酵母增殖的原位阻抗测量,从而识别子代从母代分离的瞬时事件。单个酵母细胞被可靠地固定在瓶颈状陷阱中以进行连续培养,在此过程中子细胞在水力剪切力的作用下有效地从母细胞中分离出来。每 2 分钟进行一次延时阻抗测量以监测细胞过程,包括出芽、分裂和解剖。通过使用 K 均值聚类算法首次分析自定义参数“解剖指标”,从 EIS 信号中准确提取了子细胞脱离母细胞的瞬时事件。从而验证了基于阻抗传感技术识别子细胞解剖事件。随着进一步的发展,这种集成电阻抗生物传感器的微流控装置在高通量、实时、无标记分析出芽酵母的衰老和 RLS 方面具有良好的应用前景。
摘要 基因组编辑对于作物改良非常有用。利用农杆菌中的瞬时表达系统表达基因组编辑酶的方法,称为农杆菌诱变,是基因组编辑技术中用于改良包括马铃薯在内的无性繁殖作物优良品种的一种捷径。然而,用这种方法不能选择经过编辑的个体。再生促进基因的瞬时表达可以导致幼苗再生出芽,而大多数再生促进基因的组成性表达不会导致正常再生的芽。在这里,我们报告我们可以通过正向选择获得基因组编辑的马铃薯。这些再生芽是通过将再生促进基因与基因组编辑酶基因的瞬时表达相结合的方法获得的。此外,我们证实,用这种方法获得的基因组编辑马铃薯不含有农杆菌中使用的二元载体的序列。我们的数据已提交给日本监管机构文部科学省 (MEXT),我们正在对这些马铃薯进行田间试验以进一步研究。我们的工作为通过再生促进基因的瞬时表达来再生和获取基因组编辑作物提供了一种强有力的方法。
扩张蛋白是与植物生长和胁迫反应有关的细胞壁修饰蛋白。在这项研究中,我们探索了拟南芥芽中扩张蛋白的差异定位,重点是Expa1,Expa10,Expa14和Expa15,利用PEXPA :: Expa Transce Fransicational Fusion Lines。采用化学诱导系统POP6/LHGR进行EXPA1过表达和高通量自动表型,我们评估了压力条件下的干旱反应和光合效率。我们观察到了扩张蛋白的不同表达模式,Expa1主要位于气孔后卫细胞中,而Expa10和Expa15在表皮和其他组织中显示出强细胞壁(CW)定位。Expa1的过表达导致与CW相关基因表达的明显变化,尤其是在诱导早期,包括其他扩张蛋白和CW-修饰酶的上调。诱导的Expa1线还显示出芽的显着形态变化,包括较小的植物尺寸,延迟的衰老和血管组织的结构改变。此外,Expa1过表达赋予了干旱耐受性,这是通过增强的光合效率(F V /F M)和低稳态的非光化化学淬灭(NPQ)值在干旱应力下证明的。这些发现突出了Expa1在调节植物生长,发育和压力反应中的关键作用,并在提高农作物中的干旱耐受性方面的潜在应用。
潜伏 HIV-1 原病毒的转录沉默需要复杂且重叠的机制,这对体内消除 HIV-1 构成了重大障碍。我们开发了一种新的潜伏 CRISPR 筛选策略,称为潜伏 HIV-CRISPR,该策略使用将编码 guideRNA 的慢病毒载体基因组包装到出芽病毒体的上清液中,作为维持 HIV-1 潜伏期的因素的直接读数。我们开发了一个针对表观遗传调控基因的定制 guideRNA 库,并将筛选与潜伏期逆转剂(非典型 NF κ B 通路的激活剂 AZD5582)配对,以检查控制 HIV-1 潜伏期的机制组合。 ING3 是核小体乙酰转移酶 H4 组蛋白乙酰化 (NuA4 HAT) 复合物的组成部分,它与 AZD5582 协同作用,激活 J-Lat 细胞系和 HIV-1 潜伏期原代 CD4+ T 细胞模型中的原病毒。我们发现,ING3 的敲除会降低 H4 组蛋白尾部的乙酰化和 HIV-1 LTR 上的 BRD4 占有率。然而,ING3 的敲除与通过 AZD5582 激活非典型 NF κ B 通路相结合,导致 HIV-1 原病毒上 RNA 聚合酶 II 的启动和延长显著增加,这种方式在所有细胞启动子中几乎是独一无二的。
摘要 微生物脂肽由非核糖体肽合成酶合成,由疏水脂肪酸链和亲水肽部分组成。这些结构多样的两亲分子可以与生物膜相互作用并具有各种生物活性,包括抗病毒特性。本研究旨在评估 15 种不同脂肽对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的细胞毒性和抗病毒活性,以了解它们的构效关系。非离子脂肽的细胞毒性通常比带电脂肽更强,阳离子脂肽的细胞毒性低于阴离子和非离子变体。在 100 µg/mL 时,六种脂肽将受感染的 Vero E6 细胞中的 SARS-CoV-2 RNA 降低至无法检测到的水平,而另外六种脂肽实现了 2.5 至 4.1 个对数的减少,三种没有显着影响。表面活性素、白线诱导因子 (WLIP)、芬尤金和卡泊芬净成为最有前途的抗 SARS-CoV-2 药物。详细分析显示,这四种脂肽影响了病毒生命周期的各个阶段,包括病毒包膜。表面活性素和 WLIP 显著降低了复制试验中的病毒 RNA 水平,与中和血清相当。表面活性素独特地抑制了病毒出芽,而芬尤金影响了感染前细胞治疗后的病毒结合。与其他药物相比,卡泊芬净的抗病毒作用较低。确定了影响脂肽细胞毒性和抗病毒活性的关键结构特征。含有大量氨基酸的脂肽,尤其是带电(优先为阴离子)氨基酸,表现出强大的抗 SARS-CoV-2 活性。这项研究为设计具有低细胞毒性和高抗病毒功效的新型脂肽铺平了道路,可能带来有效的治疗方法。
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
SPP 是一种 GXGD 型膜内裂解天冬氨酰蛋白酶,具有 9 个跨膜结构域,可裂解疏水脂质双层中的跨膜蛋白( 1 , 2 )。SPP 在整个进化过程中表现出高度的保守性,广泛存在于各种真核生物中,包括真菌、原生动物、植物和动物( 3 )。它具有广泛的生物学功能:通过消除前体信号肽酶 (SP) 裂解后在内质网 (ER) 中积累的信号肽来调节 ERAD 通路( 4 );与错误折叠的膜蛋白结合并形成参与体内自噬的大型寡聚复合物( 5 );通过水解信号肽来控制正常的免疫监视,促进表位片段的释放,保护细胞免受自然杀伤细胞 (NK) 的攻击 ( 6 );与病毒蛋白相互作用,影响病毒的加工和复制,或作为病毒逃避宿主免疫系统的手段 ( 4 , 7 – 9 )。敲低或抑制 SPP 会极大地影响生物体自身对病毒的抵抗力。SPP 介导的裂解负责将丙型肝炎病毒 (HCV) 核心蛋白引导到脂滴,这是病毒出芽和核衣壳组装的关键步骤。研究表明,使用抑制剂抑制 SPP 可以阻碍 HCV 增殖 ( 7 , 8 , 10 )。在感染过程中,单纯疱疹病毒 (HSV) 利用其糖蛋白 K (gK) 与 SPP 结合,促进 HSV-1 复制。SPP 诱导的敲除小鼠的病毒潜伏期显著缩短,使用 SPP 抑制剂后病毒复制也显著减少 ( 9 , 11 )。SPP 在猪瘟病毒 (CSFV) 核心蛋白的加工和成熟过程中起着重要作用,使用 (Z-LL) 2-酮抑制 SPP 可显著降低 CSFV 的活力 ( 12 )。这些实例凸显了 SPP 在病毒感染中的深远意义,表明针对宿主 SPP 可能是一种非常有效的抗病毒策略。家蚕(Bombyx mori)因其独特的吐丝特性而成为一种经济昆虫。然而,家蚕生产经常受到各种蚕业疾病的困扰。在这些疾病中,BmNPV 是最严重和最昂贵的病毒性疾病,导致严重的蚕业损失。考虑到 SPP 的特性,我们研究了编辑 BmSPP 是否可以提高家蚕对 BmNPV 的抵抗力。我们的预期是编辑 BmSPP 会产生抗性菌株。NPV 是一种存在于多种节肢动物中的杆状病毒,可感染 8 个目 600 多种昆虫,包括鳞翅目、膜翅目、双翅目、鞘翅目等(13)。它是一种具有双链环状 DNA 基因组的 DNA 病毒,因其基因组被包裹在杆状核衣壳中而得名(14)。BmNPV 在感染过程中产生两种类型的病毒颗粒:包涵体衍生病毒 (ODV) 和芽生病毒 (BV)。杆状病毒对宿主幼虫的感染是由 ODV 引起的,随后,BV 导致宿主的全身感染(15)。杆状病毒经口腔进入宿主,经前肠进入中肠,在中肠碱性环境中释放ODV。然后ODV直接与中肠细胞膜融合,释放核衣壳进入细胞质,导致原发性感染(14)。在宿主体内,病毒利用宿主自身的环境在宿主细胞内复制
2 兰契大学植物学系,兰契,贾坎德邦,印度 3 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 4 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 摘 要 本研究旨在建立一种优化的印度芥菜 (L.) Czern & Coss. (芥菜) 不同部位的体外愈伤组织诱导和增殖方案。将叶和茎外植体培养在补充了各种生长素和细胞分裂素浓度的 Murashige 和 Skoog (MS) 培养基中,以获得愈伤组织形成的最佳生长条件。所测试的激素组合包括 0.5、1 和 2 mg/L 的吲哚-3-乙酸 (IAA)、0.5、1 和 2 mg/L 的苄氨基嘌呤以及 0.5、1 和 2 mg/L 的 2,4-二氯苯氧乙酸 (2,4-D)。基于愈伤组织诱导频率,在不同时期和光照、温度和湿度培养条件下,对叶片和茎外植体产生的愈伤组织进行三次重复评估。在以 1:1 的比例补充 BAP 和 2,4 D 的 MS 培养基中,将叶片作为外植体的结果显示,接种 45 天后愈伤组织诱导率最高,这是独一无二的。茎外植体接种 45 天后,在激素浓度 BAP:IAA(0.5:1)下产生愈伤组织。这些产生的愈伤组织显示出明显的伸长和良好的叶片形状。未分化愈伤组织增生、变绿并形成成熟芽凸显了愈伤组织的有效性。继代培养后,愈伤组织的习惯化和持续传代使得培养基中无需添加细胞分裂素。愈伤组织获得细胞分裂素,导致出芽和营养器官发育。反过来,这些细胞允许器官发生,成熟植物成功再生。这种可重复的方案可用于愈伤组织诱导和植物再生,这是植物育种或生物技术应用(包括用于作物改良的基因转化)的重要工具。此外,通过既定的方案,对芥菜组织中植物激素之间相互作用的认识得到了提高。 关键词:愈伤组织、再生、生长素、作物、BAP、器官发生、芥菜 (L.) 1. 引言 在植物组织培养中,愈伤组织发生和器官发生是基因转化和作物发育所必需的过程。这些程序中的一个关键阶段是有效的愈伤组织诱导,它为以后的再生和转化提供所需的细胞材料。先前的研究表明,为了在不同芸苔属植物中获得较高的愈伤组织诱导率和植物再生,优化植物激素浓度至关重要(Gupta & Chaturvedi,2021 年;Singh 等人,2020 年)。大多数人称之为印度芥菜,Brassica juncea (L.) Czern. & Coss。是一种广泛种植的油籽作物,其油料和叶类蔬菜对经济十分重要。