新的高效燃煤电厂正在并将继续建设,以减少每兆瓦电力输出产生的污染物量。这些电厂将利用超临界、超超临界和先进超超临界技术。超临界技术之间的区别仅在于蒸汽的压力和温度。压力和温度越高,电厂效率越高。虽然不久的将来的电厂可能需要碳捕获和储存系统 (CCS) 或综合煤气化联合循环 (IGCC) 来实现排放目标,但这些设备超出了本文的讨论范围。下表概述了未来技术的典型压力和温度 (Phillips & Wheeldon, 2011),并指出超超临界和先进超超临界这两个术语不是正式定义。
摘要。此迷你审查研究了超材料的最突出的特征和用法,例如用于生物医学应用的基于超材料和超材料启发的RF组件。重点是用于传感和成像系统的应用,可穿戴和可植入的天线,用于遥测,并用作可触发吸收剂的超材料,以防止极端电磁(EM)辐射。提出了有关超材料组成,实施和幻影准备的简短讨论和趋势。本综述旨在编译最先进的生物医学系统,这些系统利用超材料概念以某种形式或另一种形式增强其性能。目标是突出超材料的各种应用,并证明不同的超材料技术如何影响从RF到THZ频率范围的EM生物医学应用。的见解和开放问题,从而阐明了原型制作过程。
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的设备示意图。 b ,在 56 µ m × 56 µ m 上,能量范围在 1.525eV 和 1.734eV 之间的光致发光强度云图。白色虚线标记了潜在的单层区域。c ,WSe 2 单层中局部发射极在 4.5K 下的光致发光光谱,随着激光功率的增加显示出不同的发射行为,以 1.7167eV(P1)和 1.7206eV(P2)处的峰值为主。d ,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,P1 和 P2 的光子发射的积分计数随着激光功率的增加显示出超线性和亚线性行为
图1:通过定制固-固材料实现的功能材料和结构。(a)将预沉积的平面形式从基底上释放后,由于良好粘附的层材料界面失配而导致的自卷起复合膜[1]。(b)通过控制其在基底上的键合位置和/或施加到基底上的预应变的释放路径,弹出具有多样空间形貌的介观结构[2]。(c)通过定位晶胞和/或控制其界面连接,表现出超大范围杨氏模量和泊松比的异质结构平面结构[3]。(d)通过在Miura(M)和蛋盒(E)模式下定制晶胞,实现具有可编程变形模型和力学性能的混合折纸[4]。(e)通过软基质中的硬颗粒旋转实现的机械膨胀结构[5]。(f)通过平板电脑在界面上的滑动机制实现的坚韧夹层玻璃[6]。
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
研究了相位像差及其对激光诱导击穿引起的流场发展的影响。使用可变形镜将相位像差施加到波长为 1064nm 的高能激光脉冲上。设计了一个实验装置来捕捉激光诱导击穿引起的流场运动,该装置着重于捕捉流场的横向轮廓和同轴轮廓。结果显示,由于非平面相的存在,火花吸收的激光脉冲能量 (181mJ) 显著降低,这是由于在通常发生击穿的焦平面中扩散所致。在收集的数据中,研究了 Zernike 0 ◦ 散光、Zernike Y-彗形像差和 Zernike 球面像差的单个实例。著名的 Horn-Schunck 光流法用于分析阴影图像,产生运动的密集光流场表示。结果表明,所研究的每种像差都会产生独特的流场,显示出超特定局部流规范的潜力,并进一步讨论了其含义。
机器学习在量子科学领域取得了重大突破,其中深度神经网络在量子多体系统建模方面表现出非凡的能力。在这里,我们探讨了数据驱动的深度神经网络在学习物理可观测量动态方面的能力与量子信息的扰乱之间的关系。我们训练一个神经网络,以找到从模型参数到随机量子电路中可观测量演化的映射,适用于各种量子扰乱模式,并测试其在将其应用于看不见的电路时的泛化和外推能力。我们的结果表明,一种特定类型的循环神经网络在系统大小和时间窗口内对其预测进行泛化方面非常强大,无论是局部还是扰乱模式。这些模式包括传统学习方法在从全波函数表示中采样时失败的模式。此外,对于显示本地化的模型,所考虑的神经网络成功地将其预测推断出超出了它所训练的时间窗口和系统大小的范围,但不是在混乱的状态中。
在第一次十字军东征期间,教会军队占领了圣城。在最神圣的寺庙地下,圣殿骑士发现了秘密的金库,里面有一个古老的恶魔神器。圣殿骑士被贪婪蒙蔽了双眼,内心软弱,跪倒在地。他们找到了一位新领主。看到神器所代表的邪恶智慧后,他们开始与魔鬼交易,并举行各种不可言说的仪式。这是第一次叛乱。教会军队撤退,耶路撒冷变成了一个堕落的深渊,地狱和我们的凡人世界现在融为一体。八个世纪以来,教会一直在发动十字军东征,夺回圣城。这片土地被彻底毁坏,到处都是纵横交错的泥泞、战壕和弹坑,绵延数千英里。这场圣战由手持恐怖武器的军队发起,双方都召唤出超自然生物,这些生物拥有巨大的力量,几乎无法阻挡。即使拥有如此不可估量的力量,两军仍处于僵持状态。